Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-10-28
    Description: Previous investigations have combined transcriptional and genetic analyses in human cell lines, but few have applied these techniques to human neural tissue. To gain a global molecular perspective on the role of the human genome in cortical development, function and ageing, we explore the temporal dynamics and genetic control of transcription in human prefrontal cortex in an extensive series of post-mortem brains from fetal development through ageing. We discover a wave of gene expression changes occurring during fetal development which are reversed in early postnatal life. One half-century later in life, this pattern of reversals is mirrored in ageing and in neurodegeneration. Although we identify thousands of robust associations of individual genetic polymorphisms with gene expression, we also demonstrate that there is no association between the total extent of genetic differences between subjects and the global similarity of their transcriptional profiles. Hence, the human genome produces a consistent molecular architecture in the prefrontal cortex, despite millions of genetic differences across individuals and races. To enable further discovery, this entire data set is freely available (from Gene Expression Omnibus: accession GSE30272; and dbGaP: accession phs000417.v1.p1) and can also be interrogated via a biologist-friendly stand-alone application (http://www.libd.org/braincloud).〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510670/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510670/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Colantuoni, Carlo -- Lipska, Barbara K -- Ye, Tianzhang -- Hyde, Thomas M -- Tao, Ran -- Leek, Jeffrey T -- Colantuoni, Elizabeth A -- Elkahloun, Abdel G -- Herman, Mary M -- Weinberger, Daniel R -- Kleinman, Joel E -- ZIC HG200365-01/Intramural NIH HHS/ -- ZIC HG200365-02/Intramural NIH HHS/ -- ZIC HG200365-03/Intramural NIH HHS/ -- England -- Nature. 2011 Oct 26;478(7370):519-23. doi: 10.1038/nature10524.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section on Neuropathology, Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, IRP, NIMH, NIH, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22031444" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/*genetics ; Autopsy ; Continental Population Groups/genetics ; Fetus/metabolism ; *Gene Expression Profiling ; Gene Expression Regulation, Developmental/*genetics ; Genome, Human/genetics ; Humans ; Polymorphism, Single Nucleotide/genetics ; Prefrontal Cortex/embryology/*growth & development/*metabolism ; Time Factors ; Transcriptome/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-11-27
    Description: RASA2 and NF1; two-negative regulators of Ras with complementary functions in melanoma RASA2 and NF1; two-negative regulators of Ras with complementary functions in melanoma, Published online: 26 November 2018; doi:10.1038/s41388-018-0578-4 RASA2 and NF1; two-negative regulators of Ras with complementary functions in melanoma
    Print ISSN: 0950-9232
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-20
    Description: Most cancer cells are characterized by aneuploidy, an abnormal number of chromosomes. We have identified a clue to the mechanistic origins of aneuploidy through integrative genomic analyses of human tumors. A diverse range of tumor types were found to harbor deletions or inactivating mutations of STAG2, a gene encoding a subunit of the cohesin complex, which regulates the separation of sister chromatids during cell division. Because STAG2 is on the X chromosome, its inactivation requires only a single mutational event. Studying a near-diploid human cell line with a stable karyotype, we found that targeted inactivation of STAG2 led to chromatid cohesion defects and aneuploidy, whereas in two aneuploid human glioblastoma cell lines, targeted correction of the endogenous mutant alleles of STAG2 led to enhanced chromosomal stability. Thus, genetic disruption of cohesin is a cause of aneuploidy in human cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374335/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374335/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Solomon, David A -- Kim, Taeyeon -- Diaz-Martinez, Laura A -- Fair, Joshlean -- Elkahloun, Abdel G -- Harris, Brent T -- Toretsky, Jeffrey A -- Rosenberg, Steven A -- Shukla, Neerav -- Ladanyi, Marc -- Samuels, Yardena -- James, C David -- Yu, Hongtao -- Kim, Jung-Sik -- Waldman, Todd -- CA097257/CA/NCI NIH HHS/ -- R01 CA133662/CA/NCI NIH HHS/ -- R01 CA138212/CA/NCI NIH HHS/ -- R01 CA169345/CA/NCI NIH HHS/ -- R01CA115699/CA/NCI NIH HHS/ -- R21CA143282/CA/NCI NIH HHS/ -- Z01 HG200337-01/Intramural NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Aug 19;333(6045):1039-43. doi: 10.1126/science.1203619.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC 20057, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21852505" target="_blank"〉PubMed〈/a〉
    Keywords: *Aneuploidy ; Antigens, Nuclear/*genetics/*physiology ; Cell Cycle ; Cell Line ; Cell Line, Tumor ; Chromatids/physiology ; *Chromosomal Instability ; Chromosomes, Human, X/genetics ; Female ; Gene Deletion ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Gene Silencing ; Gene Targeting ; Glioblastoma/*genetics ; Humans ; Karyotyping ; Male ; Melanoma/genetics ; Mutation ; Neoplasms/*genetics ; Polymorphism, Single Nucleotide ; Sarcoma, Ewing/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...