Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-09-27
    Description: Animal behaviors are reinforced by subsequent rewards following within a narrow time window. Such reward signals are primarily coded by dopamine, which modulates the synaptic connections of medium spiny neurons in the striatum. The mechanisms of the narrow timing detection, however, remain unknown. Here, we optically stimulated dopaminergic and glutamatergic inputs separately and found that dopamine promoted spine enlargement only during a narrow time window (0.3 to 2 seconds) after the glutamatergic inputs. The temporal contingency was detected by rapid regulation of adenosine 3',5'-cyclic monophosphate in thin distal dendrites, in which protein-kinase A was activated only within the time window because of a high phosphodiesterase activity. Thus, we describe a molecular basis of reinforcement plasticity at the level of single dendritic spines.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4225776/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4225776/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yagishita, Sho -- Hayashi-Takagi, Akiko -- Ellis-Davies, Graham C R -- Urakubo, Hidetoshi -- Ishii, Shin -- Kasai, Haruo -- DA035612/DA/NIDA NIH HHS/ -- GM53395/GM/NIGMS NIH HHS/ -- NS069720/NS/NINDS NIH HHS/ -- R01 GM053395/GM/NIGMS NIH HHS/ -- R01 NS069720/NS/NINDS NIH HHS/ -- R21 DA035612/DA/NIDA NIH HHS/ -- New York, N.Y. -- Science. 2014 Sep 26;345(6204):1616-20. doi: 10.1126/science.1255514.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan. Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan. ; Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan. Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan. Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan. ; Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA. ; Integrated Systems Biology Laboratory, Department of Systems Science, Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan. ; Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan. Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan. hkasai@m.u-tokyo.ac.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25258080" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cyclic AMP/metabolism ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Dendritic Spines/*drug effects/physiology ; Dopamine/*pharmacology ; Dopamine Plasma Membrane Transport Proteins/genetics/metabolism ; Electrical Synapses/drug effects/physiology ; Glutamic Acid/*physiology ; Learning/drug effects/*physiology ; Mice ; Neuronal Plasticity/*drug effects ; Phosphoric Diester Hydrolases/metabolism ; *Reward ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-04-08
    Description: Regulatory mechanisms governing the sequence from progenitor cell proliferation to neuronal migration during corticogenesis are poorly understood. Here we report that phosphorylation of DISC1, a major susceptibility factor for several mental disorders, acts as a molecular switch from maintaining proliferation of mitotic progenitor cells to activating migration of postmitotic neurons in mice. Unphosphorylated DISC1 regulates canonical Wnt signalling via an interaction with GSK3beta, whereas specific phosphorylation at serine 710 (S710) triggers the recruitment of Bardet-Biedl syndrome (BBS) proteins to the centrosome. In support of this model, loss of BBS1 leads to defects in migration, but not proliferation, whereas DISC1 knockdown leads to deficits in both. A phospho-dead mutant can only rescue proliferation, whereas a phospho-mimic mutant rescues exclusively migration defects. These data highlight a dual role for DISC1 in corticogenesis and indicate that phosphorylation of this protein at S710 activates a key developmental switch.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088774/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088774/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ishizuka, Koko -- Kamiya, Atsushi -- Oh, Edwin C -- Kanki, Hiroaki -- Seshadri, Saurav -- Robinson, Jon F -- Murdoch, Hannah -- Dunlop, Allan J -- Kubo, Ken-ichiro -- Furukori, Keiko -- Huang, Beverly -- Zeledon, Mariela -- Hayashi-Takagi, Akiko -- Okano, Hideyuki -- Nakajima, Kazunori -- Houslay, Miles D -- Katsanis, Nicholas -- Sawa, Akira -- DK-072301/DK/NIDDK NIH HHS/ -- DK-075972/DK/NIDDK NIH HHS/ -- G0600765/Medical Research Council/United Kingdom -- HD-04260/HD/NICHD NIH HHS/ -- MH-069853/MH/NIMH NIH HHS/ -- MH-084018/MH/NIMH NIH HHS/ -- MH-085226/MH/NIMH NIH HHS/ -- MH-088753/MH/NIMH NIH HHS/ -- MH-091230/MH/NIMH NIH HHS/ -- R01 DK072301/DK/NIDDK NIH HHS/ -- R01 DK075972/DK/NIDDK NIH HHS/ -- R01 DK075972-06/DK/NIDDK NIH HHS/ -- R01 HD042601/HD/NICHD NIH HHS/ -- R01 HD042601-10/HD/NICHD NIH HHS/ -- R01 MH091230/MH/NIMH NIH HHS/ -- R01 MH092443/MH/NIMH NIH HHS/ -- England -- Nature. 2011 May 5;473(7345):92-6. doi: 10.1038/nature09859. Epub 2011 Apr 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21471969" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; COS Cells ; Cell Movement/genetics ; Cell Proliferation ; Cercopithecus aethiops ; Cerebral Cortex/cytology/*embryology/physiology ; Gene Knockdown Techniques ; Glycogen Synthase Kinase 3/metabolism ; HEK293 Cells ; Humans ; Mice ; Microtubule-Associated Proteins/genetics/metabolism ; *Nerve Tissue Proteins/genetics/metabolism ; Neurons/*cytology/metabolism/*physiology ; PC12 Cells ; Phosphorylation ; Protein Binding ; Rats ; Signal Transduction ; Stem Cells/*cytology ; Wnt Proteins/metabolism ; beta Catenin/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-09-10
    Description: Dendritic spines are the major loci of synaptic plasticity and are considered as possible structural correlates of memory. Nonetheless, systematic manipulation of specific subsets of spines in the cortex has been unattainable, and thus, the link between spines and memory has been correlational. We developed a novel synaptic optoprobe, AS-PaRac1 (activated synapse targeting photoactivatable Rac1), that can label recently potentiated spines specifically, and induce the selective shrinkage of AS-PaRac1-containing spines. In vivo imaging of AS-PaRac1 revealed that a motor learning task induced substantial synaptic remodelling in a small subset of neurons. The acquired motor learning was disrupted by the optical shrinkage of the potentiated spines, whereas it was not affected by the identical manipulation of spines evoked by a distinct motor task in the same cortical region. Taken together, our results demonstrate that a newly acquired motor skill depends on the formation of a task-specific dense synaptic ensemble.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634641/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634641/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hayashi-Takagi, Akiko -- Yagishita, Sho -- Nakamura, Mayumi -- Shirai, Fukutoshi -- Wu, Yi I -- Loshbaugh, Amanda L -- Kuhlman, Brian -- Hahn, Klaus M -- Kasai, Haruo -- GM102924/GM/NIGMS NIH HHS/ -- NS071216/NS/NINDS NIH HHS/ -- R01 GM102924/GM/NIGMS NIH HHS/ -- R21 NS071216/NS/NINDS NIH HHS/ -- England -- Nature. 2015 Sep 17;525(7569):333-8. doi: 10.1038/nature15257. Epub 2015 Sep 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033. ; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan. ; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan. ; Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut 06032, USA. ; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA. ; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA. ; Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26352471" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Dendritic Spines/physiology/radiation effects ; Hippocampus/cytology/physiology/radiation effects ; In Vitro Techniques ; Light ; Long-Term Potentiation/physiology/radiation effects ; Male ; Memory/*physiology/*radiation effects ; Mice ; Molecular Probes ; Motor Cortex/cytology/*physiology/*radiation effects ; Motor Skills/physiology/radiation effects ; Neuronal Plasticity/*physiology/*radiation effects ; Rotarod Performance Test ; Spatio-Temporal Analysis ; Synapses/*physiology/*radiation effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...