Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2018-07-10
    Description: Immune cells adapt their phenotypic and functional characteristics in response to the tissue microenvironment within which they traffic and reside. The fetomaternal interface, consisting of placental trophoblasts and the maternal decidua, is a highly specialized tissue with a unique and time-limited function: to nourish and support development of the semiallogeneic fetus and protect it from inflammatory or immune-mediated injury. It is therefore important to understand how immune cells within these tissues are educated and adapt to fulfill their biological functions. This review article focuses on the local regulatory mechanisms ensuring that both innate and adaptive immune cells appropriately support the early events of implantation and placental development through direct involvement in promoting immune tolerance of fetal alloantigens, suppressing inflammation, and remodeling of maternal uterine vessels to facilitate optimal placental function and fetal growth.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-12-14
    Description: The largest mucosal surface in the body is in the gastrointestinal tract, a location that is heavily colonized by microbes that are normally harmless. A key mechanism required for maintaining a homeostatic balance between this microbial burden and the lymphocytes that densely populate the gastrointestinal tract is the production and transepithelial transport of poly-reactive IgA (ref. 1). Within the mucosal tissues, B cells respond to cytokines, sometimes in the absence of T-cell help, undergo class switch recombination of their immunoglobulin receptor to IgA, and differentiate to become plasma cells. However, IgA-secreting plasma cells probably have additional attributes that are needed for coping with the tremendous bacterial load in the gastrointestinal tract. Here we report that mouse IgA(+) plasma cells also produce the antimicrobial mediators tumour-necrosis factor-alpha (TNF-alpha) and inducible nitric oxide synthase (iNOS), and express many molecules that are commonly associated with monocyte/granulocytic cell types. The development of iNOS-producing IgA(+) plasma cells can be recapitulated in vitro in the presence of gut stroma, and the acquisition of this multifunctional phenotype in vivo and in vitro relies on microbial co-stimulation. Deletion of TNF-alpha and iNOS in B-lineage cells resulted in a reduction in IgA production, altered diversification of the gut microbiota and poor clearance of a gut-tropic pathogen. These findings reveal a novel adaptation to maintaining homeostasis in the gut, and extend the repertoire of protective responses exhibited by some B-lineage cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3487691/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3487691/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fritz, Jorg H -- Rojas, Olga Lucia -- Simard, Nathalie -- McCarthy, Douglas D -- Hapfelmeier, Siegfried -- Rubino, Stephen -- Robertson, Susan J -- Larijani, Mani -- Gosselin, Jean -- Ivanov, Ivaylo I -- Martin, Alberto -- Casellas, Rafael -- Philpott, Dana J -- Girardin, Stephen E -- McCoy, Kathy D -- Macpherson, Andrew J -- Paige, Christopher J -- Gommerman, Jennifer L -- 67157-3/Canadian Institutes of Health Research/Canada -- 89783-2/Canadian Institutes of Health Research/Canada -- MOP 114972/Canadian Institutes of Health Research/Canada -- MOP 67157/Canadian Institutes of Health Research/Canada -- MOP 89783/Canadian Institutes of Health Research/Canada -- MOP 9862/Canadian Institutes of Health Research/Canada -- R00 DK085329/DK/NIDDK NIH HHS/ -- R00 DK085329-02/DK/NIDDK NIH HHS/ -- Z01 AR041148-03/Intramural NIH HHS/ -- ZIA AR041148-08/Intramural NIH HHS/ -- England -- Nature. 2011 Dec 11;481(7380):199-203. doi: 10.1038/nature10698.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, University of Toronto, Toronto M5S 1A8, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22158124" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Marrow Cells/cytology ; Cell Lineage ; Cells, Cultured ; Chimera/immunology ; Citrobacter rodentium/immunology ; Coculture Techniques ; Female ; Germ-Free Life ; Granulocytes/cytology/metabolism ; Immunity, Innate/immunology ; Immunoglobulin A/biosynthesis/*immunology ; Intestinal Mucosa/cytology/immunology ; Intestine, Small/*cytology/*immunology/microbiology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Monocytes/cytology/metabolism ; Nitric Oxide Synthase Type II/biosynthesis/deficiency/metabolism ; Phenotype ; Plasma Cells/*cytology/*immunology/metabolism ; Spleen/cytology ; Stromal Cells/cytology ; Tumor Necrosis Factor-alpha/biosynthesis/deficiency/immunology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-02-27
    Description: Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523082/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523082/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Waddell, Nicola -- Pajic, Marina -- Patch, Ann-Marie -- Chang, David K -- Kassahn, Karin S -- Bailey, Peter -- Johns, Amber L -- Miller, David -- Nones, Katia -- Quek, Kelly -- Quinn, Michael C J -- Robertson, Alan J -- Fadlullah, Muhammad Z H -- Bruxner, Tim J C -- Christ, Angelika N -- Harliwong, Ivon -- Idrisoglu, Senel -- Manning, Suzanne -- Nourse, Craig -- Nourbakhsh, Ehsan -- Wani, Shivangi -- Wilson, Peter J -- Markham, Emma -- Cloonan, Nicole -- Anderson, Matthew J -- Fink, J Lynn -- Holmes, Oliver -- Kazakoff, Stephen H -- Leonard, Conrad -- Newell, Felicity -- Poudel, Barsha -- Song, Sarah -- Taylor, Darrin -- Waddell, Nick -- Wood, Scott -- Xu, Qinying -- Wu, Jianmin -- Pinese, Mark -- Cowley, Mark J -- Lee, Hong C -- Jones, Marc D -- Nagrial, Adnan M -- Humphris, Jeremy -- Chantrill, Lorraine A -- Chin, Venessa -- Steinmann, Angela M -- Mawson, Amanda -- Humphrey, Emily S -- Colvin, Emily K -- Chou, Angela -- Scarlett, Christopher J -- Pinho, Andreia V -- Giry-Laterriere, Marc -- Rooman, Ilse -- Samra, Jaswinder S -- Kench, James G -- Pettitt, Jessica A -- Merrett, Neil D -- Toon, Christopher -- Epari, Krishna -- Nguyen, Nam Q -- Barbour, Andrew -- Zeps, Nikolajs -- Jamieson, Nigel B -- Graham, Janet S -- Niclou, Simone P -- Bjerkvig, Rolf -- Grutzmann, Robert -- Aust, Daniela -- Hruban, Ralph H -- Maitra, Anirban -- Iacobuzio-Donahue, Christine A -- Wolfgang, Christopher L -- Morgan, Richard A -- Lawlor, Rita T -- Corbo, Vincenzo -- Bassi, Claudio -- Falconi, Massimo -- Zamboni, Giuseppe -- Tortora, Giampaolo -- Tempero, Margaret A -- Australian Pancreatic Cancer Genome Initiative -- Gill, Anthony J -- Eshleman, James R -- Pilarsky, Christian -- Scarpa, Aldo -- Musgrove, Elizabeth A -- Pearson, John V -- Biankin, Andrew V -- Grimmond, Sean M -- 103721/Wellcome Trust/United Kingdom -- C29717/A17263/Cancer Research UK/United Kingdom -- C596/A18076/Cancer Research UK/United Kingdom -- P30 CA006973/CA/NCI NIH HHS/ -- P30 CA016672/CA/NCI NIH HHS/ -- P50 CA062924/CA/NCI NIH HHS/ -- P50 CA62924/CA/NCI NIH HHS/ -- England -- Nature. 2015 Feb 26;518(7540):495-501. doi: 10.1038/nature14169.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia [2] QIMR Berghofer Medical Research Institute, Herston Road, Brisbane 4006, Australia. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2010, Australia. ; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia [3] South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales 2170, Australia [4] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK. ; 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia [2] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK. ; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] Department of Anatomical Pathology, St Vincent's Hospital, Sydney, New South Wales 2010, Australia. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] School of Environmental &Life Sciences, University of Newcastle, Ourimbah, New South Wales 2258, Australia. ; 1] Department of Surgery, Royal North Shore Hospital, St Leonards, Sydney, New South Wales 2065, Australia [2] University of Sydney, Sydney, New South Wales 2006, Australia. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] University of Sydney, Sydney, New South Wales 2006, Australia [3] Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia. ; 1] Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia [2] School of Medicine, University of Western Sydney, Penrith, New South Wales 2175, Australia. ; Department of Surgery, Fremantle Hospital, Alma Street, Fremantle, Western Australia 6160, Australia. ; Department of Gastroenterology, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia. ; Department of Surgery, Princess Alexandra Hospital, Ipswich Rd, Woollongabba, Queensland 4102, Australia. ; 1] School of Surgery M507, University of Western Australia, 35 Stirling Highway, Nedlands 6009, Australia [2] St John of God Pathology, 12 Salvado Rd, Subiaco, Western Australia 6008, Australia [3] Bendat Family Comprehensive Cancer Centre, St John of God Subiaco Hospital, Subiaco, Western Australia 6008, Australia. ; 1] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK [2] Academic Unit of Surgery, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G4 OSF, UK [3] West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK. ; 1] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK [2] Department of Medical Oncology, Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow G12 0YN, UK. ; Norlux Neuro-Oncology Laboratory, CRP-Sante Luxembourg, 84 Val Fleuri, L-1526, Luxembourg. ; Norlux Neuro-Oncology, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5019 Bergen, Norway. ; Departments of Surgery and Pathology, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany. ; Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. ; Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston Texas 77030, USA. ; The David M. Rubenstein Pancreatic Cancer Research Center and Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. ; 1] ARC-NET Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona 37134, Italy [2] Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy. ; ARC-NET Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona 37134, Italy. ; Department of Surgery and Oncology, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy. ; 1] Department of Surgery and Oncology, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy [2] Departments of Surgery and Pathology, Ospedale Sacro Cuore Don Calabria Negrar, Verona 37024, Italy. ; 1] Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy [2] Departments of Surgery and Pathology, Ospedale Sacro Cuore Don Calabria Negrar, Verona 37024, Italy. ; Department of Oncology, University and Hospital Trust of Verona, Verona 37134, Italy. ; Division of Hematology and Oncology, University of California, San Francisco, California 94122, USA. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] University of Sydney, Sydney, New South Wales 2006, Australia. ; Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25719666" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/drug therapy/genetics ; Animals ; Carcinoma, Pancreatic Ductal/drug therapy/genetics ; *DNA Mutational Analysis ; DNA Repair/genetics ; Female ; Genes, BRCA1 ; Genes, BRCA2 ; Genetic Markers/genetics ; Genome, Human/*genetics ; Genomic Instability/genetics ; *Genomics ; Genotype ; Humans ; Mice ; Mutation/*genetics ; Pancreatic Neoplasms/classification/drug therapy/*genetics ; Platinum/pharmacology ; Point Mutation/genetics ; Poly(ADP-ribose) Polymerase Inhibitors ; Xenograft Model Antitumor Assays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-05-05
    Description: Protein transport across the cytoplasmic membrane of bacterial cells is mediated by either the general secretion (Sec) system or the twin-arginine translocase (Tat). The Tat machinery exports folded and cofactor-containing proteins from the cytoplasm to the periplasm by using the transmembrane proton motive force as a source of energy. The Tat apparatus apparently senses the folded state of its protein substrates, a quality-control mechanism that prevents premature export of nascent unfolded or misfolded polypeptides, but its mechanistic basis has not yet been determined. Here, we investigated the innate ability of the model Escherichia coli Tat system to recognize and translocate de novo–designed protein substrates with experimentally determined differences in the extent of folding. Water-soluble, four-helix bundle maquette proteins were engineered to bind two, one, or no heme b cofactors, resulting in a concomitant reduction in the extent of their folding, assessed with temperature-dependent CD spectroscopy and one-dimensional 1H NMR spectroscopy. Fusion of the archetypal N-terminal Tat signal peptide of the E. coli trimethylamine-N-oxide (TMAO) reductase (TorA) to the N terminus of the protein maquettes was sufficient for the Tat system to recognize them as substrates. The clear correlation between the level of Tat-dependent export and the degree of heme b–induced folding of the maquette protein suggested that the membrane-bound Tat machinery can sense the extent of folding and conformational flexibility of its substrates. We propose that these artificial proteins are ideal substrates for future investigations of the Tat system's quality-control mechanism.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-12-01
    Description: Chronic infections strain the regenerative capacity of antiviral T lymphocyte populations, leading to failure in long-term immunity. The cellular and molecular events controlling this regenerative capacity, however, are unknown. We found that two distinct states of virus-specific CD8(+) T cells exist in chronically infected mice and humans. Differential expression of the T-box transcription factors T-bet and Eomesodermin (Eomes) facilitated the cooperative maintenance of the pool of antiviral CD8(+) T cells during chronic viral infection. T-bet(hi) cells displayed low intrinsic turnover but proliferated in response to persisting antigen, giving rise to Eomes(hi) terminal progeny. Genetic elimination of either subset resulted in failure to control chronic infection, which suggests that an imbalance in differentiation and renewal could underlie the collapse of immunity in humans with chronic infections.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653769/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653769/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paley, Michael A -- Kroy, Daniela C -- Odorizzi, Pamela M -- Johnnidis, Jonathan B -- Dolfi, Douglas V -- Barnett, Burton E -- Bikoff, Elizabeth K -- Robertson, Elizabeth J -- Lauer, Georg M -- Reiner, Steven L -- Wherry, E John -- 059312/Wellcome Trust/United Kingdom -- AI061699/AI/NIAID NIH HHS/ -- AI0663445/AI/NIAID NIH HHS/ -- AI076458/AI/NIAID NIH HHS/ -- AI078897/AI/NIAID NIH HHS/ -- AI082630/AI/NIAID NIH HHS/ -- AI083022/AI/NIAID NIH HHS/ -- HHSN266200500030C/AI/NIAID NIH HHS/ -- HHSN266200500030C/PHS HHS/ -- P01 AI078897/AI/NIAID NIH HHS/ -- P30 CA016520/CA/NCI NIH HHS/ -- P30 DK043351/DK/NIDDK NIH HHS/ -- R01 AI042370/AI/NIAID NIH HHS/ -- R01 AI061699/AI/NIAID NIH HHS/ -- R01 AI076458/AI/NIAID NIH HHS/ -- T32 AI007632/AI/NIAID NIH HHS/ -- T32-AI-07324/AI/NIAID NIH HHS/ -- U19 AI082630/AI/NIAID NIH HHS/ -- U19 AI083022/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2012 Nov 30;338(6111):1220-5. doi: 10.1126/science.1229620.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23197535" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CD8-Positive T-Lymphocytes/*immunology ; Hepatitis B, Chronic/*immunology ; Humans ; Liver/virology ; Lymphocyte Activation ; Mice ; Mice, Knockout ; Stem Cells/immunology ; T-Box Domain Proteins/genetics/*metabolism ; T-Lymphocyte Subsets/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-08-08
    Description: The latest Ebola virus (EBOV) epidemic spread rapidly through Guinea, Sierra Leone, and Liberia, creating a global public health crisis and accelerating the assessment of experimental therapeutics and vaccines in clinical trials. One of those vaccines is based on recombinant vesicular stomatitis virus expressing the EBOV glycoprotein (VSV-EBOV), a live-attenuated vector with marked preclinical efficacy. Here, we provide the preclinical proof that VSV-EBOV completely protects macaques against lethal challenge with the West African EBOV-Makona strain. Complete and partial protection was achieved with a single dose given as late as 7 and 3 days before challenge, respectively. This indicates that VSV-EBOV may protect humans against EBOV infections in West Africa with relatively short time to immunity, promoting its use for immediate public health responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marzi, Andrea -- Robertson, Shelly J -- Haddock, Elaine -- Feldmann, Friederike -- Hanley, Patrick W -- Scott, Dana P -- Strong, James E -- Kobinger, Gary -- Best, Sonja M -- Feldmann, Heinz -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2015 Aug 14;349(6249):739-42. doi: 10.1126/science.aab3920. Epub 2015 Aug 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA. ; Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA. ; Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada. ; Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA. feldmannh@niaid.nih.gov.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26249231" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Drug Evaluation, Preclinical ; Ebola Vaccines/*administration & dosage/immunology ; Ebolavirus/genetics/*immunology ; Genetic Vectors ; Glycoproteins/genetics/*immunology ; Hemorrhagic Fever, Ebola/*prevention & control ; Macaca ; Vesiculovirus ; Viral Proteins/genetics/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-10-08
    Description: A promising route to the synthesis of protein-mimetic materials that are capable of complex functions, such as molecular recognition and catalysis, is provided by sequence-defined peptoid polymers--structural relatives of biologically occurring polypeptides. Peptoids, which are relatively non-toxic and resistant to degradation, can fold into defined structures through a combination of sequence-dependent interactions. However, the range of possible structures that are accessible to peptoids and other biological mimetics is unknown, and our ability to design protein-like architectures from these polymer classes is limited. Here we use molecular-dynamics simulations, together with scattering and microscopy data, to determine the atomic-resolution structure of the recently discovered peptoid nanosheet, an ordered supramolecular assembly that extends macroscopically in only two dimensions. Our simulations show that nanosheets are structurally and dynamically heterogeneous, can be formed only from peptoids of certain lengths, and are potentially porous to water and ions. Moreover, their formation is enabled by the peptoids' adoption of a secondary structure that is not seen in the natural world. This structure, a zigzag pattern that we call a Sigma('sigma')-strand, results from the ability of adjacent backbone monomers to adopt opposed rotational states, thereby allowing the backbone to remain linear and untwisted. Linear backbones tiled in a brick-like way form an extended two-dimensional nanostructure, the Sigma-sheet. The binary rotational-state motif of the Sigma-strand is not seen in regular protein structures, which are usually built from one type of rotational state. We also show that the concept of building regular structures from multiple rotational states can be generalized beyond the peptoid nanosheet system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mannige, Ranjan V -- Haxton, Thomas K -- Proulx, Caroline -- Robertson, Ellen J -- Battigelli, Alessia -- Butterfoss, Glenn L -- Zuckermann, Ronald N -- Whitelam, Stephen -- England -- Nature. 2015 Oct 15;526(7573):415-20. doi: 10.1038/nature15363. Epub 2015 Oct 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94709, USA. ; Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26444241" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-04-26
    Description: Glucagon is a 29-amino-acid peptide released from the alpha-cells of the islet of Langerhans, which has a key role in glucose homeostasis. Glucagon action is transduced by the class B G-protein-coupled glucagon receptor (GCGR), which is located on liver, kidney, intestinal smooth muscle, brain, adipose tissue, heart and pancreas cells, and this receptor has been considered an important drug target in the treatment of diabetes. Administration of recently identified small-molecule GCGR antagonists in patients with type 2 diabetes results in a substantial reduction of fasting and postprandial glucose concentrations. Although an X-ray structure of the transmembrane domain of the GCGR has previously been solved, the ligand (NNC0640) was not resolved. Here we report the 2.5 A structure of human GCGR in complex with the antagonist MK-0893 (ref. 4), which is found to bind to an allosteric site outside the seven transmembrane (7TM) helical bundle in a position between TM6 and TM7 extending into the lipid bilayer. Mutagenesis of key residues identified in the X-ray structure confirms their role in the binding of MK-0893 to the receptor. The unexpected position of the binding site for MK-0893, which is structurally similar to other GCGR antagonists, suggests that glucagon activation of the receptor is prevented by restriction of the outward helical movement of TM6 required for G-protein coupling. Structural knowledge of class B receptors is limited, with only one other ligand-binding site defined--for the corticotropin-releasing hormone receptor 1 (CRF1R)--which was located deep within the 7TM bundle. We describe a completely novel allosteric binding site for class B receptors, providing an opportunity for structure-based drug design for this receptor class and furthering our understanding of the mechanisms of activation of these receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jazayeri, Ali -- Dore, Andrew S -- Lamb, Daniel -- Krishnamurthy, Harini -- Southall, Stacey M -- Baig, Asma H -- Bortolato, Andrea -- Koglin, Markus -- Robertson, Nathan J -- Errey, James C -- Andrews, Stephen P -- Teobald, Iryna -- Brown, Alastair J H -- Cooke, Robert M -- Weir, Malcolm -- Marshall, Fiona H -- England -- Nature. 2016 Apr 25;533(7602):274-7. doi: 10.1038/nature17414.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire AL7 3AX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27111510" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-11-24
    Description: Publisher Correction: Single-cell RNA-seq reveals cell type-specific transcriptional signatures at the maternal–foetal interface during pregnancy Publisher Correction: Single-cell RNA-seq reveals cell type-specific transcriptional signatures at the maternal–foetal interface during pregnancy, Published online: 23 November 2018; doi:10.1038/ncomms16219 Publisher Correction: Single-cell RNA-seq reveals cell type-specific transcriptional signatures at the maternal–foetal interface during pregnancy
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Psychosomatic Research 16 (1972), S. 261-262+IN1-IN2+263-265 
    ISSN: 0022-3999
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Medicine , Psychology
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...