Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Publication Date: 2012-09-18
    Description: Immune recognition of protein antigens relies on the combined interaction of multiple antibody loops, which provide a fairly large footprint and constrain the size and shape of protein surfaces that can be targeted. Single protein loops can mediate extremely high-affinity binding, but it is unclear whether such a mechanism is available to antibodies. Here we report the isolation and characterization of an antibody called C05, which neutralizes strains from multiple subtypes of influenza A virus, including H1, H2 and H3. X-ray and electron microscopy structures show that C05 recognizes conserved elements of the receptor-binding site on the haemagglutinin surface glycoprotein. Recognition of the haemagglutinin receptor-binding site is dominated by a single heavy-chain complementarity-determining region 3 loop, with minor contacts from heavy-chain complementarity-determining region 1, and is sufficient to achieve nanomolar binding with a minimal footprint. Thus, binding predominantly with a single loop can allow antibodies to target small, conserved functional sites on otherwise hypervariable antigens.〈br /〉〈br /〉〈a href="" target="_blank"〉〈img src="" border="0"〉〈/a〉   〈a href="" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ekiert, Damian C -- Kashyap, Arun K -- Steel, John -- Rubrum, Adam -- Bhabha, Gira -- Khayat, Reza -- Lee, Jeong Hyun -- Dillon, Michael A -- O'Neil, Ryann E -- Faynboym, Aleksandr M -- Horowitz, Michael -- Horowitz, Lawrence -- Ward, Andrew B -- Palese, Peter -- Webby, Richard -- Lerner, Richard A -- Bhatt, Ramesh R -- Wilson, Ian A -- GM080209/GM/NIGMS NIH HHS/ -- HHSN266200700010C/PHS HHS/ -- P01 AI058113/AI/NIAID NIH HHS/ -- P01AI058113/AI/NIAID NIH HHS/ -- P41 RR017573/RR/NCRR NIH HHS/ -- T32 GM080209/GM/NIGMS NIH HHS/ -- U01 AI070373/AI/NIAID NIH HHS/ -- U01AI070373/AI/NIAID NIH HHS/ -- U54 GM094586/GM/NIGMS NIH HHS/ -- U54-AI057158/AI/NIAID NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- England -- Nature. 2012 Sep 27;489(7417):526-32. doi: 10.1038/nature11414. Epub 2012 Sep 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Neutralizing/*chemistry/genetics/*immunology ; Antibodies, Viral/*chemistry/genetics/*immunology ; Antibody Specificity/genetics/*immunology ; Antigens, Viral/chemistry/immunology ; Binding Sites ; Complementarity Determining Regions/chemistry/genetics/immunology ; Conserved Sequence ; Cross Reactions/genetics/immunology ; Crystallography, X-Ray ; Enzyme-Linked Immunosorbent Assay ; Epitopes/chemistry/immunology ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/immunology ; Influenza A Virus, H1N1 Subtype/chemistry/immunology ; Influenza A Virus, H3N2 Subtype/chemistry/immunology ; Influenza A virus/chemistry/*classification/*immunology ; Influenza Vaccines/immunology ; Mice ; Models, Molecular ; Molecular Sequence Data ; Mutation/genetics ; Orthomyxoviridae Infections/immunology/prevention & control/virology ; Protein Conformation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...