Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-07-13
    Description: Recent advances in whole-genome sequencing have brought the vision of personal genomics and genomic medicine closer to reality. However, current methods lack clinical accuracy and the ability to describe the context (haplotypes) in which genome variants co-occur in a cost-effective manner. Here we describe a low-cost DNA sequencing and haplotyping process, long fragment read (LFR) technology, which is similar to sequencing long single DNA molecules without cloning or separation of metaphase chromosomes. In this study, ten LFR libraries were made using only approximately 100 picograms of human DNA per sample. Up to 97% of the heterozygous single nucleotide variants were assembled into long haplotype contigs. Removal of false positive single nucleotide variants not phased by multiple LFR haplotypes resulted in a final genome error rate of 1 in 10 megabases. Cost-effective and accurate genome sequencing and haplotyping from 10-20 human cells, as demonstrated here, will enable comprehensive genetic studies and diverse clinical applications.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3397394/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3397394/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peters, Brock A -- Kermani, Bahram G -- Sparks, Andrew B -- Alferov, Oleg -- Hong, Peter -- Alexeev, Andrei -- Jiang, Yuan -- Dahl, Fredrik -- Tang, Y Tom -- Haas, Juergen -- Robasky, Kimberly -- Zaranek, Alexander Wait -- Lee, Je-Hyuk -- Ball, Madeleine Price -- Peterson, Joseph E -- Perazich, Helena -- Yeung, George -- Liu, Jia -- Chen, Linsu -- Kennemer, Michael I -- Pothuraju, Kaliprasad -- Konvicka, Karel -- Tsoupko-Sitnikov, Mike -- Pant, Krishna P -- Ebert, Jessica C -- Nilsen, Geoffrey B -- Baccash, Jonathan -- Halpern, Aaron L -- Church, George M -- Drmanac, Radoje -- P50 HG005550/HG/NHGRI NIH HHS/ -- P50HG005550/HG/NHGRI NIH HHS/ -- England -- Nature. 2012 Jul 11;487(7406):190-5. doi: 10.1038/nature11236.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Complete Genomics, Inc., 2071 Stierlin Court, Mountain View, California 94043, USA. bpeters@completegenomics.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22785314" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Cell Line ; Female ; Gene Silencing ; Genetic Variation ; *Genome, Human ; Genomics/*methods ; Haplotypes ; Humans ; Mutation ; Reproducibility of Results ; Sequence Analysis, DNA/economics/*methods/standards
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-07-02
    Description: Homozygosity has long been associated with rare, often devastating, Mendelian disorders, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P 〈 1 x 10(-300), 2.1 x 10(-6), 2.5 x 10(-10) and 1.8 x 10(-10), respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months' less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4516141/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4516141/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joshi, Peter K -- Esko, Tonu -- Mattsson, Hannele -- Eklund, Niina -- Gandin, Ilaria -- Nutile, Teresa -- Jackson, Anne U -- Schurmann, Claudia -- Smith, Albert V -- Zhang, Weihua -- Okada, Yukinori -- Stancakova, Alena -- Faul, Jessica D -- Zhao, Wei -- Bartz, Traci M -- Concas, Maria Pina -- Franceschini, Nora -- Enroth, Stefan -- Vitart, Veronique -- Trompet, Stella -- Guo, Xiuqing -- Chasman, Daniel I -- O'Connel, Jeffrey R -- Corre, Tanguy -- Nongmaithem, Suraj S -- Chen, Yuning -- Mangino, Massimo -- Ruggiero, Daniela -- Traglia, Michela -- Farmaki, Aliki-Eleni -- Kacprowski, Tim -- Bjonnes, Andrew -- van der Spek, Ashley -- Wu, Ying -- Giri, Anil K -- Yanek, Lisa R -- Wang, Lihua -- Hofer, Edith -- Rietveld, Cornelius A -- McLeod, Olga -- Cornelis, Marilyn C -- Pattaro, Cristian -- Verweij, Niek -- Baumbach, Clemens -- Abdellaoui, Abdel -- Warren, Helen R -- Vuckovic, Dragana -- Mei, Hao -- Bouchard, Claude -- Perry, John R B -- Cappellani, Stefania -- Mirza, Saira S -- Benton, Miles C -- Broeckel, Ulrich -- Medland, Sarah E -- Lind, Penelope A -- Malerba, Giovanni -- Drong, Alexander -- Yengo, Loic -- Bielak, Lawrence F -- Zhi, Degui -- van der Most, Peter J -- Shriner, Daniel -- Magi, Reedik -- Hemani, Gibran -- Karaderi, Tugce -- Wang, Zhaoming -- Liu, Tian -- Demuth, Ilja -- Zhao, Jing Hua -- Meng, Weihua -- Lataniotis, Lazaros -- van der Laan, Sander W -- Bradfield, Jonathan P -- Wood, Andrew R -- Bonnefond, Amelie -- Ahluwalia, Tarunveer S -- Hall, Leanne M -- Salvi, Erika -- Yazar, Seyhan -- Carstensen, Lisbeth -- de Haan, Hugoline G -- Abney, Mark -- Afzal, Uzma -- Allison, Matthew A -- Amin, Najaf -- Asselbergs, Folkert W -- Bakker, Stephan J L -- Barr, R Graham -- Baumeister, Sebastian E -- Benjamin, Daniel J -- Bergmann, Sven -- Boerwinkle, Eric -- Bottinger, Erwin P -- Campbell, Archie -- Chakravarti, Aravinda -- Chan, Yingleong -- Chanock, Stephen J -- Chen, Constance -- Chen, Y-D Ida -- Collins, Francis S -- Connell, John -- Correa, Adolfo -- Cupples, L Adrienne -- Smith, George Davey -- Davies, Gail -- Dorr, Marcus -- Ehret, Georg -- Ellis, Stephen B -- Feenstra, Bjarke -- Feitosa, Mary F -- Ford, Ian -- Fox, Caroline S -- Frayling, Timothy M -- Friedrich, Nele -- Geller, Frank -- Scotland, Generation -- Gillham-Nasenya, Irina -- Gottesman, Omri -- Graff, Misa -- Grodstein, Francine -- Gu, Charles -- Haley, Chris -- Hammond, Christopher J -- Harris, Sarah E -- Harris, Tamara B -- Hastie, Nicholas D -- Heard-Costa, Nancy L -- Heikkila, Kauko -- Hocking, Lynne J -- Homuth, Georg -- Hottenga, Jouke-Jan -- Huang, Jinyan -- Huffman, Jennifer E -- Hysi, Pirro G -- Ikram, M Arfan -- Ingelsson, Erik -- Joensuu, Anni -- Johansson, Asa -- Jousilahti, Pekka -- Jukema, J Wouter -- Kahonen, Mika -- Kamatani, Yoichiro -- Kanoni, Stavroula -- Kerr, Shona M -- Khan, Nazir M -- Koellinger, Philipp -- Koistinen, Heikki A -- Kooner, Manraj K -- Kubo, Michiaki -- Kuusisto, Johanna -- Lahti, Jari -- Launer, Lenore J -- Lea, Rodney A -- Lehne, Benjamin -- Lehtimaki, Terho -- Liewald, David C M -- Lind, Lars -- Loh, Marie -- Lokki, Marja-Liisa -- London, Stephanie J -- Loomis, Stephanie J -- Loukola, Anu -- Lu, Yingchang -- Lumley, Thomas -- Lundqvist, Annamari -- Mannisto, Satu -- Marques-Vidal, Pedro -- Masciullo, Corrado -- Matchan, Angela -- Mathias, Rasika A -- Matsuda, Koichi -- Meigs, James B -- Meisinger, Christa -- Meitinger, Thomas -- Menni, Cristina -- Mentch, Frank D -- Mihailov, Evelin -- Milani, Lili -- Montasser, May E -- Montgomery, Grant W -- Morrison, Alanna -- Myers, Richard H -- Nadukuru, Rajiv -- Navarro, Pau -- Nelis, Mari -- Nieminen, Markku S -- Nolte, Ilja M -- O'Connor, George T -- Ogunniyi, Adesola -- Padmanabhan, Sandosh -- Palmas, Walter R -- Pankow, James S -- Patarcic, Inga -- Pavani, Francesca -- Peyser, Patricia A -- Pietilainen, Kirsi -- Poulter, Neil -- Prokopenko, Inga -- Ralhan, Sarju -- Redmond, Paul -- Rich, Stephen S -- Rissanen, Harri -- Robino, Antonietta -- Rose, Lynda M -- Rose, Richard -- Sala, Cinzia -- Salako, Babatunde -- Salomaa, Veikko -- Sarin, Antti-Pekka -- Saxena, Richa -- Schmidt, Helena -- Scott, Laura J -- Scott, William R -- Sennblad, Bengt -- Seshadri, Sudha -- Sever, Peter -- Shrestha, Smeeta -- Smith, Blair H -- Smith, Jennifer A -- Soranzo, Nicole -- Sotoodehnia, Nona -- Southam, Lorraine -- Stanton, Alice V -- Stathopoulou, Maria G -- Strauch, Konstantin -- Strawbridge, Rona J -- Suderman, Matthew J -- Tandon, Nikhil -- Tang, Sian-Tsun -- Taylor, Kent D -- Tayo, Bamidele O -- Toglhofer, Anna Maria -- Tomaszewski, Maciej -- Tsernikova, Natalia -- Tuomilehto, Jaakko -- Uitterlinden, Andre G -- Vaidya, Dhananjay -- van Hylckama Vlieg, Astrid -- van Setten, Jessica -- Vasankari, Tuula -- Vedantam, Sailaja -- Vlachopoulou, Efthymia -- Vozzi, Diego -- Vuoksimaa, Eero -- Waldenberger, Melanie -- Ware, Erin B -- Wentworth-Shields, William -- Whitfield, John B -- Wild, Sarah -- Willemsen, Gonneke -- Yajnik, Chittaranjan S -- Yao, Jie -- Zaza, Gianluigi -- Zhu, Xiaofeng -- BioBank Japan Project -- Salem, Rany M -- Melbye, Mads -- Bisgaard, Hans -- Samani, Nilesh J -- Cusi, Daniele -- Mackey, David A -- Cooper, Richard S -- Froguel, Philippe -- Pasterkamp, Gerard -- Grant, Struan F A -- Hakonarson, Hakon -- Ferrucci, Luigi -- Scott, Robert A -- Morris, Andrew D -- Palmer, Colin N A -- Dedoussis, George -- Deloukas, Panos -- Bertram, Lars -- Lindenberger, Ulman -- Berndt, Sonja I -- Lindgren, Cecilia M -- Timpson, Nicholas J -- Tonjes, Anke -- Munroe, Patricia B -- Sorensen, Thorkild I A -- Rotimi, Charles N -- Arnett, Donna K -- Oldehinkel, Albertine J -- Kardia, Sharon L R -- Balkau, Beverley -- Gambaro, Giovanni -- Morris, Andrew P -- Eriksson, Johan G -- Wright, Margie J -- Martin, Nicholas G -- Hunt, Steven C -- Starr, John M -- Deary, Ian J -- Griffiths, Lyn R -- Tiemeier, Henning -- Pirastu, Nicola -- Kaprio, Jaakko -- Wareham, Nicholas J -- Perusse, Louis -- Wilson, James G -- Girotto, Giorgia -- Caulfield, Mark J -- Raitakari, Olli -- Boomsma, Dorret I -- Gieger, Christian -- van der Harst, Pim -- Hicks, Andrew A -- Kraft, Peter -- Sinisalo, Juha -- Knekt, Paul -- Johannesson, Magnus -- Magnusson, Patrik K E -- Hamsten, Anders -- Schmidt, Reinhold -- Borecki, Ingrid B -- Vartiainen, Erkki -- Becker, Diane M -- Bharadwaj, Dwaipayan -- Mohlke, Karen L -- Boehnke, Michael -- van Duijn, Cornelia M -- Sanghera, Dharambir K -- Teumer, Alexander -- Zeggini, Eleftheria -- Metspalu, Andres -- Gasparini, Paolo -- Ulivi, Sheila -- Ober, Carole -- Toniolo, Daniela -- Rudan, Igor -- Porteous, David J -- Ciullo, Marina -- Spector, Tim D -- Hayward, Caroline -- Dupuis, Josee -- Loos, Ruth J F -- Wright, Alan F -- Chandak, Giriraj R -- Vollenweider, Peter -- Shuldiner, Alan R -- Ridker, Paul M -- Rotter, Jerome I -- Sattar, Naveed -- Gyllensten, Ulf -- North, Kari E -- Pirastu, Mario -- Psaty, Bruce M -- Weir, David R -- Laakso, Markku -- Gudnason, Vilmundur -- Takahashi, Atsushi -- Chambers, John C -- Kooner, Jaspal S -- Strachan, David P -- Campbell, Harry -- Hirschhorn, Joel N -- Perola, Markus -- Polasek, Ozren -- Wilson, James F -- 068545/Wellcome Trust/United Kingdom -- 072856/Wellcome Trust/United Kingdom -- 072960/Wellcome Trust/United Kingdom -- 079771/Wellcome Trust/United Kingdom -- 084723/Wellcome Trust/United Kingdom -- 098051/Wellcome Trust/United Kingdom -- 099194/Wellcome Trust/United Kingdom -- 105022/Wellcome Trust/United Kingdom -- 250157/European Research Council/International -- 280559/European Research Council/International -- 323195/European Research Council/International -- BARCVBRU-2012-1/Department of Health/United Kingdom -- BB/F019394/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- CZB/4/276/Chief Scientist Office/United Kingdom -- CZB/4/505/Chief Scientist Office/United Kingdom -- CZB/4/710/Chief Scientist Office/United Kingdom -- CZD/16/6/Chief Scientist Office/United Kingdom -- CZD/16/6/2/Chief Scientist Office/United Kingdom -- CZD/16/6/3/Chief Scientist Office/United Kingdom -- CZD/16/6/4/Chief Scientist Office/United Kingdom -- ETM/55/Chief Scientist Office/United Kingdom -- G0601966/Medical Research Council/United Kingdom -- G0700704/Medical Research Council/United Kingdom -- G0700931/Medical Research Council/United Kingdom -- G0701863/Medical Research Council/United Kingdom -- G9521010/Medical Research Council/United Kingdom -- G9815508/Medical Research Council/United Kingdom -- MC_PC_U127561128/Medical Research Council/United Kingdom -- MC_U106179471/Medical Research Council/United Kingdom -- MC_U127561128/Medical Research Council/United Kingdom -- MC_UU_12013/3/Medical Research Council/United Kingdom -- MC_UU_12015/1/Medical Research Council/United Kingdom -- MR/K026992/1/Medical Research Council/United Kingdom -- P20 MD006899/MD/NIMHD NIH HHS/ -- P30 DK020572/DK/NIDDK NIH HHS/ -- P30 DK063491/DK/NIDDK NIH HHS/ -- R03 DC013373/DC/NIDCD NIH HHS/ -- RG/2001004/12869/British Heart Foundation/United Kingdom -- RP-PG-0407-10371/Department of Health/United Kingdom -- SAG09977/Biotechnology and Biological Sciences Research Council/United Kingdom -- UL1 TR000124/TR/NCATS NIH HHS/ -- Medical Research Council/United Kingdom -- England -- Nature. 2015 Jul 23;523(7561):459-62. doi: 10.1038/nature14618. Epub 2015 Jul 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK. ; 1] Estonian Genome Center, University of Tartu, Riia 23b, 51010, Tartu, Estonia. [2] Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Cambridge, 02141 Massachusetts, USA. [3] Program in Medical and Population Genetics, Broad Institute, Cambridge Center 7, Cambridge, Massachusetts 02242, USA. [4] Department of Genetics, Harvard Medical School, 25 Shattuck St, Boston, Massachusetts 02115, USA. ; 1] Unit of Public Health Genomics, National Institute for Health and Welfare, P.O. Box 104, Helsinki, FI-00251, Finland. [2] Institute for Molecular Medicine Finland (FIMM), University of Helsinki, P.O. Box 20, Helsinki, FI-00014, Finland. ; Unit of Public Health Genomics, National Institute for Health and Welfare, P.O. Box 104, Helsinki, FI-00251, Finland. ; Department of Medical Sciences, University of Trieste, Strada di Fiume 447 - Osp. di Cattinara, 34149 Trieste, Italy. ; Institute of Genetics and Biophysics "A. Buzzati-Traverso" CNR, via Pietro Castellino, 111, 80131 Naples, Italy. ; Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA. ; 1] The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA. [2] The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA. ; 1] Icelandic Heart Association, Holtasmari 1, 201, Kopavogur, Iceland. [2] Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland. ; 1] Department of Epidemiology and Biostatistics, Imperial College London, Norfolk Place, London W2 1PG, UK. [2] Department of Cardiology, Ealing Hospital NHS Trust, Uxbridge Road, Southall, Middlesex UB1 3HW, UK. ; 1] Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan. [2] Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan. ; Department of Medicine, University of Eastern Finland, 70210 Kuopio, Finland. ; Institute for Social Research, University of Michigan, 426 Thompson Street, Ann Arbor, Michigan 48104, USA. ; Department of Epidemiology, University of Michigan, 1415 Washington Heights, Ann Arbor, Michigan 48109, USA. ; Cardiovascular Health Research Unit, Departments of Biostatistics and Medicine, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, Washington 98101, USA. ; Institute of Population Genetics, National Research Council, Trav. La Crucca n. 3 - Reg. Baldinca, 07100 Sassari, Italy. ; Epidemiology, University of North Carolina, 137 E. Franklin St., Suite 306, Chapel Hill, North Carolina 27599, USA. ; Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, SE-75108 Uppsala, Sweden. ; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, EH4 2XU Edinburgh, UK. ; Department of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC, The Netherlands. ; 1] Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute, 1124 W. Carson Street, Torrance, California 90502, USA. [2] Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California 90502, USA. ; Division of Preventive Medicine, Brigham and Women's Hospital, 900 Commonwealth Avenue, East, Harvard Medical School, Boston, Boston, Massachusetts 02215, USA. ; Division of Endocrinology, Diabetes, and Nutrition and Program for Personalised and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, 685 Baltimore St. MSTF, Baltimore, Maryland 21201, USA. ; 1] Department of Medical Genetics, University of Lausanne, Rue du Bugnon 27, Lausanne, 1005, Switzerland. [2] Swiss Institute of Bioinformatics, Quartier Sorge - batiment genopode, Lausanne, 1015, Switzerland. ; Genomic Research on Complex Diseases (GRC) Group, CSIR-Centre for Cellular and Molecular Biology, Habshiguda, Uppal Road, Hyderabad, 500007, India. ; Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Avenue, Boston, Massachusetts 02118, USA. ; 1] Department of Twin Research &Genetic Epidemiology, King's College London, South Wing, Block D, 3rd Floor, Westminster Bridge Road, London SE1 7EH, UK. [2] NIHR Biomedical Research Centre, Guy's and St. Thomas' Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK. ; Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy. ; Department of Nutrition and Dietetics, Harokopio University of Athens, 70, El. Venizelou Ave, Athens 17671, Greece. ; Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15A, Greifswald 17475, Germany. ; Center for Human Genetic Research, 55 Fruit Street, Massachusetts General Hospital, Massachusetts 02114, USA. ; Department of Epidemiology, Erasmus Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands. ; Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599, USA. ; Genomics and Molecular Medicine, CSIR-Institute of Genomics &Integrative Biology, Mathura Road, New Delhi, 110025, India. ; The GeneSTAR Research Program, Division of General Internal Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA. ; Department of Genetics, Washington University School of Medicine, 4444 Forest Park Boulevard, Saint Louis, Missouri 63108, USA. ; 1] Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Auenbruggerplatz 22, Graz, A-8036, Austria. [2] Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Auenbruggerplatz2, Graz, A-8036, Austria. ; Erasmus School of Economics, Erasmus University Rotterdam, Burgemeester Oudlaan 50, Rotterdam, 3000 DR, The Netherlands. ; Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, CMM L8:03, Karolinska University Hospital, Solna, Stockholm, 171 76, Sweden. ; 1] Channing Division of Network Medicine, Brigham &Women's Hospital, 181 Longwood, Boston, Massachusetts 02115, USA. [2] Nutrition, Harvard School of Public Health, 401 Park Drive, Boston, Massachusetts 02215, USA. ; Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), 39100 Bolzano, Italy (affiliated Institute of the University of Lubeck, D-23562 Lubeck, Germany). ; University of Groningen, University Medical Center Groningen, Department of Cardiology, Hanzeplein 1, Groningen, 9700 RB, The Netherlands. ; 1] Research Unit of Molecular Epidemiology, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Ingolstadter Landstr. 1, Neuherberg 85764, Germany. [2] Institute of Epidemiology II, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Ingolstadter Landstr. 1, Neuherberg 85764, Germany. [3] Institute of Genetic Epidemiology, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Ingolstadter Landstr. 1, Neuherberg 85764, Germany. ; Department of Biological Psychology, VU University Amsterdam, Van der Boechorststraat 1, Amsterdam, 1081 BT, The Netherlands. ; 1] Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. [2] NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. ; Department of Medicine, University of Mississippi Medical Center, 2500 N. State St., Jackson, Mississippi 39216, USA. ; Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, Louisiana 70808, USA. ; MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK. ; Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", via dell'Istria 65, 34137 Trieste, Italy. ; Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, GPO Box 2434, Brisbane Queensland 4001, Australia. ; Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, Wisconsin 53226, USA. ; Quantitative Genetics, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane Queensland 4006, Australia. ; Dipartimento di Scienze della Vita e della Riproduzione, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy. ; Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK. ; CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Lille 2 University, 1 Rue du Professeur Calmette, 59000 Lille, France. ; Department of Biostatistics, University of Alabama at Birmingham, 1665 University Blvd, Birmingham, Alabama 35294, USA. ; Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, P.O. box 30.001, 9700 RB, Groningen, The Netherlands. ; Center for Research on Genomics and Global Health, National Human Genome Research Institute, Building 12A/Room 4047, 12 South Dr., Bethesda, Maryland 20892, USA. ; Estonian Genome Center, University of Tartu, Riia 23b, 51010, Tartu, Estonia. ; MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK. ; 1] Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, Maryland 20850, USA. [2] Cancer Genomics Research Laboratory, National Cancer Institute, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA. ; 1] Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, Berlin 14195, Germany. [2] Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestr. 72, Berlin, 14195 Germany. ; 1] Charite Research Group on Geriatrics, Charite - Universitatsmedizin Berlin, Reinickendorferstr. 61, 13347 Berlin, Germany. [2] Institute of Medical and Human Genetics, Charite - Universitatsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany. ; Division of Population Health Sciences, Medical Research Institute, University of Dundee, Ninewells Hospital and School of Medicine, Dundee DD2 4BF, UK. ; William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK. ; Experimental Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands. ; Center for Applied Genomics, Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA. ; Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Barrack Road, Exeter EX2 5DW, UK. ; 1] COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, DK-2820 Copenhagen, Denmark. [2] Novo Nordisk Centre for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, Copenhagen, 2100, Denmark. [3] Steno Diabetes Centre, Niels Steensens Vej 2, Gentofte, 2820, Denmark. ; Department of Cardiovascular Sciences, University of Leicester, BHF Cardiovascular Research Centre, Glenfield Hospital, Groby Road, Leicester LE3 9QP, UK. ; Department of Health Sciences, University of Milan, via A. di Rudini 8, 20142 Milan, Italy. ; Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, 2 Verdun Street, Perth, Western Australia 6009, Australia. ; Department of Epidemiology Research, Statens Serum Institut, Artillerivej 5, Copenhagen, 2300, Denmark. ; Clinical Epidemiology, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC, The Netherlands. ; Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, Illinois 60637, USA. ; Department of Family and Preventive Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. ; 1] Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands. [2] Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Catharijnesingel 52, Utrecht, 3501 DG, The Netherlands. [3] Institute of Cardiovascular Science, faculty of Population Health Sciences, University College London, Gower Street, London WC1E 6BT, UK. ; University of Groningen, University Medical Center Groningen, Department of Internal Medicine, Hanzeplein 1, Groningen, 9700 RB, The Netherlands. ; Department of Medicine, Columbia University, 622 W. 168th Street, New York, New York 10032, USA. ; Institute for Community Medicine, University Medicine Greifswald, W.-Rathenau-Str. 48, Greifswald 17475, Germany. ; 1] Department of Economics, Cornell University, 480 Uris Hall, Ithaca, New York 14853, USA. [2] Department of Economics and Center for Economic and Social Research, University of Southern California, 314C Dauterive Hall, 635 Downey Way, Los Angeles, California 90089, USA. ; Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, 1200 Pressler Street, Suite 453E, Houston, Texas 77030, USA. ; The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA. ; Centre for Genomic and Experimental Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK. ; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA. ; 1] Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Cambridge, 02141 Massachusetts, USA. [2] Program in Medical and Population Genetics, Broad Institute, Cambridge Center 7, Cambridge, Massachusetts 02242, USA. [3] Department of Genetics, Harvard Medical School, 25 Shattuck St, Boston, Massachusetts 02115, USA. ; Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, Maryland 20850, USA. ; Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, 665 Huntington Ave, Boston, Massachusetts 02115, USA. ; Genome Technology Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland 20892, USA. ; College of Medicine, Dentistry and Nursing, Ninewells Hospital and Medical School, College Office, Level 10, Dundee DD1 9SY, UK. ; 1] Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Avenue, Boston, Massachusetts 02118, USA. [2] National Heart, Lung, and Blood Institute's Framingham Heart Study, 73 Mt. Wayte Ave, Framingham, Massachusetts 01702, USA. ; 1] Psychology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK. [2] Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK. ; Department of Internal Medicine B, University Medicine Greifswald, Ferdinand-Sauerbruch-Str. NK, Greifswald 17475, Germany. ; 1] McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA. [2] Cardiology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil, 4, Geneve 14, 1211, Switzerland. ; Robertson Centre, University of Glasgow, Boyd Orr Building, Glasgow G12 8QQ, Scotland. ; 1] National Heart, Lung, and Blood Institute's Framingham Heart Study, 73 Mt. Wayte Ave, Framingham, Massachusetts 01702, USA. [2] Division of Endocrinology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, Massachusetts 02115, USA. ; Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str. NK, 17475 Greifswald, Germany. ; Department of Twin Research &Genetic Epidemiology, King's College London, South Wing, Block D, 3rd Floor, Westminster Bridge Road, London SE1 7EH, UK. ; Nutrition, Harvard School of Public Health, 401 Park Drive, Boston, Massachusetts 02215, USA. ; Division of Biostatistics, Washington University, 660 S Euclid, St Louis, Missouri 63110, USA. ; 1] MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, EH4 2XU Edinburgh, UK. [2] Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh EH25 9RG, UK. ; 1] Centre for Genomic and Experimental Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK. [2] Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK. ; National Institutes on Aging, National Institutes of Health, Bethesda, Maryland 20892, USA. ; 1] National Heart, Lung, and Blood Institute's Framingham Heart Study, 73 Mt. Wayte Ave, Framingham, Massachusetts 01702, USA. [2] Department of Neurology, Boston University School of Medicine, 72 E Concord St, Boston, Massachusetts 02118, USA. ; Department of Public Health, University of Helsinki, Hjelt Institute, P.O.Box 41, Mannerheimintie 172, Helsinki, FI-00014, Finland. ; Musculoskeletal Research Programme, Division of Applied Medicine, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK. ; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China. ; 1] Department of Epidemiology, Erasmus Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands. [2] Department of Radiology, Erasmus Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands. ; 1] Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK. [2] Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, SE-17121, Sweden. ; 1] Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, SE-75108 Uppsala, Sweden. [2] Uppsala Clinical Research Center, Uppsala University, Uppsala, SE-75237, Sweden. ; Department of Chronic Disease Prevention, National Institute for Health and Welfare, P.O. Box 30, Helsinki, FI-00271, Finland. ; Department of Cardiology C5-P, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC, The Netherlands. ; Department of Clinical Physiology, University of Tampere and Tampere University Hospital, P.O. Box 2000, Tampere, FI-33521, Finland. ; Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan. ; 1] Diabetes Prevention Unit, National Institute for Health and Welfare, P.O. Box 30, FI-00271 Helsinki, Finland. [2] Department of Medicine, Division of Endocrinology, Helsinki University Central Hospital, P.O.Box 340, Haartmaninkatu 4, Helsinki, FI-00029, Finland. [3] Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, Helsinki, FI-00290, Finland. ; Department of Cardiology, Ealing Hospital NHS Trust, Uxbridge Road, Southall, Middlesex UB1 3HW, UK. ; Laboratory for Genotyping Development RCfIMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan. ; Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, FI-70210, Finland. ; 1] Institute of Behavioural Sciences, University of Helsinki, P.O. Box 9, University of Helsinki, Helsinki, FI-00014, Finland. [2] Folkhalsan Reasearch Centre, PB 63, Helsinki, FI-00014 University of Helsinki, Finland. ; Department of Epidemiology and Biostatistics, Imperial College London, Norfolk Place, London W2 1PG, UK. ; Department of Clinical Chemistry, Fimlab Laboratories and School of Medicine University of Tampere, Tampere, FI-33520, Finland. ; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK. ; Department of Medical Sciences, University Hospital, Uppsala, 75185, Sweden. ; 1] Department of Epidemiology and Biostatistics, Imperial College London, Norfolk Place, London W2 1PG, UK. [2] Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, 138648, Singapore. ; Transplantation laboratory, Haartman Institute, University of Helsinki, P.O. Box 21, Helsinki, FI-00014, Finland. ; National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA. ; Ophthalmology, Massachusetts Eye and Ear, 243 Charles Street, Boston, Massachusetts 02114, USA. ; Department of Statistics, University of Auckland, 303.325 Science Centre, Private Bag 92019, Auckland, 1142, New Zealand. ; Department of Health, Functional Capacity and Welfare, National Institute for Health and Welfare, P.O. Box 30, Helsinki, FI-00271, Finland. ; Department of Internal Medicine, University Hospital, Rue du Bugnon 44, Lausanne, 1011, Switzerland. ; Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK. ; 1] The GeneSTAR Research Program, Division of General Internal Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA. [2] Division of Allergy and Clinical Immunology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA. ; Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan. ; Division of General Internal Medicine, Massachusetts General Hospital, 50 Staniford St, Boston, Massachusetts 02114, USA. ; Institute of Epidemiology II, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Ingolstadter Landstr. 1, Neuherberg 85764, Germany. ; 1] Institute of Human Genetics, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Ingolstadter Landstr. 1, Neuherberg 85764, Germany. [2] Institute of Human Genetics, Klinikum rechts der Isar, Technische Universitat Munchen, Ismaninger Str. 22, Munchen 81675, Germany. ; Molecular Epidemiology, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane, Queensland 4006, Australia. ; Genome Science Institute, Boston University School of Medicine, 72 East Concord Street, E-304, Boston, Massachusetts 02118, USA. ; HUCH Heart and Lung center, Helsinki University Central Hospital, P.O. Box 340, Helsinki, FI-00029, Finland. ; 1] National Heart, Lung, and Blood Institute's Framingham Heart Study, 73 Mt. Wayte Ave, Framingham, Massachusetts 01702, USA. [2] Pulmonary Center and Department of Medicine, Boston University School of Medicine, 72 E Concord St, Boston, Massachusetts 02118, USA. ; Department of Medicine, University of Ibadan, Ibadan, Nigeria. ; ICAMS, University of Glasgow, 126 University Way, Glasgow G12 8TA, UK. ; Division of Epidemiology and Community Health, University of Minnesota, 1300 S 2nd Street, Minneapolis, Minnesota 55454, USA. ; Centre for Global Health and Department of Public Health, School of Medicine, University of Split, Soltanska 2, 21000 Split, Croatia. ; 1] Institute for Molecular Medicine Finland (FIMM), University of Helsinki, P.O. Box 20, Helsinki, FI-00014, Finland. [2] Department of Medicine, Division of Endocrinology, Helsinki University Central Hospital, P.O.Box 340, Haartmaninkatu 4, Helsinki, FI-00029, Finland. [3] Obesity Research Unit, Research Programs Unit, Diabetes and Obesity, University of Helsinki, P.O.Box 63, Haartmaninkatu 8, FI-00014, Helsinki, Finland. ; International Centre for Circulatory Health, Imperial College London, London W2 1LA, UK. ; Department of Genomics of Common Disease, School of Public Health, Imperial College London, London SW7 2AZ, UK. ; Department of Cardiology and Cardio thoracic Surgery Hero DMC Heart Institute, Civil Lines, 141001, Ludhiana, India. ; Psychology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK. ; Department Public Health Sciences, University of Virginia School of Medicine, 3232 West Complex, Charlottesville, Virginia 22908, USA. ; Department of Psychological &Brain Sciences, Indiana University Bloomington, 1101 E. 10th Street, Bloomington, Indiana 47405, USA. ; Institute of Molecular Biology and Biochemistry, Medical University Graz, Harrachgasse 21, Graz, A-8010, Austria. ; 1] Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, CMM L8:03, Karolinska University Hospital, Solna, Stockholm, 171 76, Sweden. [2] Science for Life Laboratory, Karolinska Institutet, Stockholm, SE-17121, Sweden. ; University of Dundee, Kirsty Semple Way, Dundee DD2 4DB, UK. ; Cardiovascular Health Research Unit, Division of Cardiology, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, Washington 98101, USA. ; 1] Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK. [2] Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK. ; Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland. ; UMR INSERM U1122; IGE-PCV "Interactions Gene-Environnement en Physiopathologie Cardio-Vasculaire", INSERM, University of Lorraine, 30 Rue Lionnois, 54000 Nancy, France. ; 1] Institute of Genetic Epidemiology, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Ingolstadter Landstr. 1, Neuherberg 85764, Germany. [2] Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universitat, Munich 81377, Germany. ; Department of Endocrinology, All India Institute of Medical Sciences, Ansari Nagar East, New Delhi, 110029, India. ; National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK. ; Department of Public Health Sciences, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, USA. ; 1] Department of Cardiovascular Sciences, University of Leicester, BHF Cardiovascular Research Centre, Glenfield Hospital, Groby Road, Leicester LE3 9QP, UK. [2] NIHR Leicester Cardiovascular Biomedical Research Unit, University of Leicester, Glenfield Hospital, Groby Road, Leicester LE3 9QP, UK. ; 1] Estonian Genome Center, University of Tartu, Riia 23b, 51010, Tartu, Estonia. [2] Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu, 51010, Estonia. ; 1] Diabetes Prevention Unit, National Institute for Health and Welfare, P.O. Box 30, FI-00271 Helsinki, Finland. [2] Centre for Vascular Prevention, Danube-University Krems, 3500 Krems, Austria. [3] Diabetes Research Group, King Abdulaziz University, 21589 Jeddah, Saudi Arabia. ; 1] Department of Epidemiology, Erasmus Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands. [2] Department of Internal Medicine, Erasmus Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands. ; 1] The GeneSTAR Research Program, Division of General Internal Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA. [2] Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA. ; Finnish Lung Health Association, Sibeliuksenkatu 11 A 1, Helsinki, FI-00250, Finland. ; 1] Research Unit of Molecular Epidemiology, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Ingolstadter Landstr. 1, Neuherberg 85764, Germany. [2] Institute of Epidemiology II, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Ingolstadter Landstr. 1, Neuherberg 85764, Germany. ; Genetic Epidemiology, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane, Queensland 4006, Australia. ; Centre for Population Health Sciences, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK. ; Diabetes Unit, KEM Hospital and Research Centre, Rasta Peth, Pune, 411011, India. ; Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute, 1124 W. Carson Street, Torrance, California 90502, USA. ; Renal Unit, Department of Medicine, University of Verona, Piazzale A. Stefani 1, 37124 Verona, Italy. ; Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio 44106, USA. ; 1] Department of Epidemiology Research, Statens Serum Institut, Artillerivej 5, Copenhagen, 2300, Denmark. [2] Department of Medicine, Stanford University, 300 Pasteur Drive, Stanford, California 94305, USA. ; COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, DK-2820 Copenhagen, Denmark. ; 1] CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Lille 2 University, 1 Rue du Professeur Calmette, 59000 Lille, France. [2] Department of Genomics of Common Disease, School of Public Health, Imperial College London, London SW7 2AZ, UK. ; 1] Center for Applied Genomics, Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA. [2] Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA. ; Translational Gerontology Branch, National institute on Aging, Baltimore, Maryland 21225, USA. ; Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, No. 9 Edinburgh Bioquarter, 9 Little France Road, Edinburgh EH16 4UX, UK. ; Centre for Pharmacogenetics and Pharmacogenomics, Medical Research Institute, University of Dundee, Ninewells Hospital and School of Medicine, Dundee DD1 9SY, UK. ; 1] William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK [2] Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, 21589, Saudi Arabia. ; 1] Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestr. 72, Berlin, 14195 Germany. [2] Faculty of Medicine, Imperial College London, Charing Cross Campus, St Dunstan's Road, London W6 8RP, UK. [3] Institutes for Neurogenetics and Integrative &Experimental Genomics, University of Lubeck, Lubeck 23562, Germany. ; Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, Berlin 14195, Germany. ; 1] Program in Medical and Population Genetics, Broad Institute, Cambridge Center 7, Cambridge, Massachusetts 02242, USA. [2] Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK. ; Department of Medicine, University of Leipzig, Leipzig 04103, Germany. ; 1] MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK. [2] Novo Nordisk Centre for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, Copenhagen, 2100, Denmark. [3] Institute of Preventive Medicine, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, 2000, Denmark. ; Department of Epidemiology, University of Alabama at Birmingham, 1665 University Boulevard, Birmingham, Alabama 35294, USA. ; Department of Psychiatry, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, Groningen, 9700 RB, The Netherlands. ; Epidemiology of diabetes, obesity and chronic kidney disease over the lifecourse, Inserm, CESP Center for Research in Epidemiology and Population Health U1018, 16 Avenue Paul Vaillant Couturier, 94807 Villejuif, France. ; Dipartimento di Scienze Mediche, Catholic University of the Sacred Heart, Via G. Moscati 31/34, 00168 Roma, Italy. ; 1] Estonian Genome Center, University of Tartu, Riia 23b, 51010, Tartu, Estonia. [2] Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK. [3] Department of Biostatistics, University of Liverpool, Duncan Building, Daulby Stree, Liverpool L69 3GA, UK. ; 1] Department of Chronic Disease Prevention, National Institute for Health and Welfare, P.O. Box 30, Helsinki, FI-00271, Finland. [2] Department of General Practice and Primary Health Care, University of Helsinki, P.O. Box 20, University of Helsinki, Helsinki, FI-00014, Finland. [3] Vasa Central Hospital, Sandviksgatan 2-4, Vasa, FI-65130, Finland. [4] Folkhalsan Reasearch Centre, PB 63, University of Helsinki, Helsinki, FI-00014, Finland. [5] Unit of General Practice, Helsinki University Central Hospital, Haartmaninkatu 4, Helsinki, FI-00290, Finland. ; Neuro-Imaging Genetics, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane, Queensland 4006, Australia. ; Cardiovascular Genetics Division, University of Utah, 420 Chipeta Way, Room 1160, Salt Lake City, Utah 84117, USA. ; 1] Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK. [2] Alzheimer Scotland Research Centre, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK. ; 1] Department of Epidemiology, Erasmus Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands. [2] Department of Psychiatry, Erasmus Medical Center, PO Box 2040, Rotterdam, 3000 CA, The Netherlands. ; 1] Department of Medical Sciences, University of Trieste, Strada di Fiume 447 - Osp. di Cattinara, 34149 Trieste, Italy. [2] Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", via dell'Istria 65, 34137 Trieste, Italy. ; 1] Institute for Molecular Medicine Finland (FIMM), University of Helsinki, P.O. Box 20, Helsinki, FI-00014, Finland. [2] Department of Public Health, University of Helsinki, Hjelt Institute, P.O.Box 41, Mannerheimintie 172, Helsinki, FI-00014, Finland. [3] National Institute for Health and Welfare (THL), P.O.Box 30, Mannerheimintie 166, Helsinki, FI-00271, Finland. ; Department of Kinesiology, Laval University, 2300 rue de la Terrasse, Quebec G1V 0A6, Canada. ; Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N. State Street, Jackson, Mississippi 39216, USA. ; 1] Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, FI-20521, Finland. [2] Research Center of Applied and Preventive Cardiovascular medicine, University of Turku, Turku, FI-20521, Finland. ; 1] University of Groningen, University Medical Center Groningen, Department of Cardiology, Hanzeplein 1, Groningen, 9700 RB, The Netherlands. [2] Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Catharijnesingel 52, Utrecht, 3501 DG, The Netherlands. [3] University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, Groningen, 9700 RB, The Netherlands. ; Department of Economics, Stockholm School of Economics, Box 6501, Stockholm, SE-113 83, Sweden. ; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Box 281, Stockholm, SE-171 77, Sweden. ; Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Auenbruggerplatz 22, Graz, A-8036, Austria. ; Department of Genetics and Biostatistics, Washington University School of Medicine, 4444 Forest Park Boulevard, Saint Louis, Missouri 63108, USA. ; 1] The GeneSTAR Research Program, Division of General Internal Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA. [2] Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA. ; 1] Genomics and Molecular Medicine, CSIR-Institute of Genomics &Integrative Biology, Mathura Road, New Delhi, 110025, India. [2] School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India. ; 1] Department of Pediatrics, University of Oklahoma Health Sciences Center, 940 Stanton Young Boulevard, Oklahoma City, Oklahoma 73104, USA. [2] Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA. ; 1] Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", via dell'Istria 65, 34137 Trieste, Italy. [2] Sidra Medical and Research Centre, Doha, Qatar. ; 1] The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA. [2] The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA. [3] The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA. ; 1] Genomic Research on Complex Diseases (GRC) Group, CSIR-Centre for Cellular and Molecular Biology, Habshiguda, Uppal Road, Hyderabad, 500007, India. [2] Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome, Singapore, 138672, Singapore. ; 1] Division of Endocrinology, Diabetes, and Nutrition and Program for Personalised and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, 685 Baltimore St. MSTF, Baltimore, Maryland 21201, USA. [2] Program for Personalised and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, 685 Baltimore St. MSTF, Baltimore, Maryland 21201, USA. [3] Geriatric Research and Education Clinical Center, Veterans Administration Medical Center, 685 W Baltimore MSTF, Baltimore, Maryland 21201, USA. ; BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK. ; 1] Epidemiology, University of North Carolina, 137 E. Franklin St., Suite 306, Chapel Hill, North Carolina 27599, USA. [2] Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, 137 E. Franklin Street, Suite 306, Chapel Hill, North Carolina 27599, USA. ; 1] Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Services, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, Washington 98101, USA. [2] Group Health Research Institute, Group Health Cooperative, 1730 Minor Ave, Suite 1360, Seattle, Washington 98101, USA. ; 1] Department of Epidemiology and Biostatistics, Imperial College London, Norfolk Place, London W2 1PG, UK. [2] Department of Cardiology, Ealing Hospital NHS Trust, Uxbridge Road, Southall, Middlesex UB1 3HW, UK. [3] Imperial College Healthcare NHS Trust, Imperial College London, Praed Street, London W2 1NY, UK. ; 1] Department of Cardiology, Ealing Hospital NHS Trust, Uxbridge Road, Southall, Middlesex UB1 3HW, UK. [2] National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK. [3] Imperial College Healthcare NHS Trust, Imperial College London, Praed Street, London W2 1NY, UK. ; Population Health Research Institute, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK. ; 1] Estonian Genome Center, University of Tartu, Riia 23b, 51010, Tartu, Estonia. [2] Unit of Public Health Genomics, National Institute for Health and Welfare, P.O. Box 104, Helsinki, FI-00251, Finland. ; 1] Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK. [2] Centre for Global Health and Department of Public Health, School of Medicine, University of Split, Soltanska 2, 21000 Split, Croatia. ; 1] Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK. [2] MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, EH4 2XU Edinburgh, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26131930" target="_blank"〉PubMed〈/a〉
    Keywords: Biological Evolution ; Blood Pressure/genetics ; Body Height/*genetics ; Cholesterol, LDL/genetics ; *Cognition ; Cohort Studies ; Educational Status ; Female ; Forced Expiratory Volume/genetics ; Genome, Human/genetics ; *Homozygote ; Humans ; Lung Volume Measurements ; Male ; Phenotype
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-01-28
    Description: Introduction The influence of hepatitis C virus (HCV) infection on long-term outcomes of patients with acute myocardial infarction (AMI) is unclear. Therefore, this study aimed to analyse the impact of HCV infection on 12-year mortality rates after AMI using data from the Taiwan National Health Insurance Research Database (NHIRD). Methods NHIRD data for approximately 23 000 000 patients between January 2000 and December 2012 were analysed. A total of 186 112 cases of first AMI admission were identified. A total of 4659 patients with HCV infection not receiving interferon therapy were enrolled and divided into those with (n=107) or without (n=4552) cirrhosis. Using one-to-one matching, 4552 matched controls were included in the final analysis. Results The 12-year mortality rate was significantly higher in patients with AMI with HCV infection and cirrhosis than in those with HCV infection but without cirrhosis (P〈0.0001) or controls (P〈0.0001). Patients with HCV infection but without cirrhosis had significantly higher long-term mortality rates than the matched controls (P〈0.0001). The HR for mortality was higher in patients with HCV infection (HR 1.12; 95% CI 1.06 to 1.18). HCV influenced outcomes among the subgroups of patients who were male (HR 1.15) and those who had hypertension (HR 1.14). Conclusions HCV infection influenced the 12-year mortality rates of patients with AMI, especially those who were male and those who had hypertension. Cirrhosis further increased the long-term mortality rates of patients with AMI with HCV infection.
    Keywords: Open access, Intensive care
    Electronic ISSN: 2044-6055
    Topics: Medicine
    Published by BMJ Publishing
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-15
    Description: DHTKD1, a part of 2-ketoadipic acid dehydrogenase complex, is involved in lysine and tryptophan catabolism. Mutations in DHTKD1 block the metabolic pathway and cause 2-aminoadipic and 2-oxoadipic aciduria (AMOXAD), an autosomal recessive inborn metabolic disorder. In addition, a nonsense mutation in DHTKD1 that we identified previously causes Charcot-Marie-Tooth disease (CMT) type 2Q, one of the most common inherited neurological disorders affecting the peripheral nerves in the musculature. However, the comprehensive molecular mechanism underlying CMT2Q remains elusive. Here, we show that Dhtkd1 –/– mice mimic the major aspects of CMT2 phenotypes, characterized by progressive weakness and atrophy in the distal parts of limbs with motor and sensory dysfunctions, which are accompanied with decreased nerve conduction velocity. Moreover, DHTKD1 deficiency causes severe metabolic abnormalities and dramatically increased levels of 2-ketoadipic acid (2-KAA) and 2-aminoadipic acid (2-AAA) in urine. Further studies revealed that both 2-KAA and 2-AAA could stimulate insulin biosynthesis and secretion. Subsequently, elevated insulin regulates myelin protein zero ( Mpz ) transcription in Schwann cells via upregulating the expression of early growth response 2 (Egr2), leading to myelin structure damage and axonal degeneration. Finally, 2-AAA-fed mice do reproduce phenotypes similar to CMT2Q phenotypes. In conclusion, we have demonstrated that loss of DHTKD1 causes CMT2Q-like phenotypes through dysregulation of Mpz mRNA and protein zero (P 0 ) which are closely associated with elevated DHTKD1 substrate and insulin levels. These findings further indicate an important role of metabolic disorders in addition to mitochondrial insufficiency in the pathogenesis of peripheral neuropathies.
    Print ISSN: 0270-7306
    Electronic ISSN: 1098-5549
    Topics: Biology , Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-04-12
    Description: In this study, photocatalytic experiments of 20 mg l –1 sulfamethazine (SMN) in aqueous solution containing ZnO with different morphologies, tetra-needle-like ZnO (T-ZnO), flower-like ZnO (F-ZnO) and nanoparticles ZnO (P-ZnO), were performed. The results indicated that photocatalytic degradation of SMN was effective and followed the pseudo-first-order reaction, but the degree of SMN mineralization showed obvious differences using ZnO with different shapes. After 12 h irradiation, 86%, 71% and 50% of the initial total organic carbon was eliminated in SMN suspension containing T-ZnO, F-ZnO and P-ZnO, respectively. The release ratio of sulfur was close to 100% in the presence of T-ZnO, but reached to 86% and 67% in the presence of F-ZnO and P-ZnO, respectively. The release ratio of nitrogen was about 76%, 63% and 40% using T-ZnO, F-ZnO and P-ZnO as photocatalyst, respectively. The morphology of ZnO played an important role in determining its catalytic activity. Seven intermediates were observed and identified in the UV/T-ZnO reaction system by LC-MS/MS analysis, and a possible degradation pathway was proposed.
    Keywords: nanotechnology, photochemistry, environmental chemistry
    Electronic ISSN: 2054-5703
    Topics: Natural Sciences in General
    Published by Royal Society
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-04-20
    Description: The genetic basis of autism spectrum disorder (ASD) is known to consist of contributions from de novo mutations in variant-intolerant genes. We hypothesize that rare inherited structural variants in cis-regulatory elements (CRE-SVs) of these genes also contribute to ASD. We investigated this by assessing the evidence for natural selection and transmission distortion of CRE-SVs in whole genomes of 9274 subjects from 2600 families affected by ASD. In a discovery cohort of 829 families, structural variants were depleted within promoters and untranslated regions, and paternally inherited CRE-SVs were preferentially transmitted to affected offspring and not to their unaffected siblings. The association of paternal CRE-SVs was replicated in an independent sample of 1771 families. Our results suggest that rare inherited noncoding variants predispose children to ASD, with differing contributions from each parent.
    Keywords: Genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-07-07
    Description: We previously discovered that oral treatment with AC261066, a synthetic selective agonist for the retinoic acid β 2 -receptor, decreases oxidative stress in the liver, pancreas, and kidney of mice fed a high-fat diet (HFD). Since hyperlipidemic states are causally associated with myocardial ischemia and oxidative stress, we have now investigated the effects of AC261066 in an ex vivo ischemia/reperfusion (I/R) injury model in hearts of two prototypic dysmetabolic mice. We found that a 6-week oral treatment with AC261066 in both genetically hypercholesterolemic (ApoE –/– ) and obese (HFD-fed) wild-type mice exerts protective effects when their hearts are subsequently subjected to I/R ex vivo in the absence of added drug. In ApoE –/– mice this cardioprotection ensued without hyperlipidemic changes. Cardioprotection consisted of attenuation of infarct size, diminution of norepinephrine (NE) spillover, and alleviation of reperfusion arrhythmias. This cardioprotection was associated with a reduction in oxidative stress and mast cell (MC) degranulation. We suggest that the reduction in myocardial injury and adrenergic activation, and the antiarrhythmic effects, result from decreased formation of oxygen radicals and toxic aldehydes known to elicit the release of MC-derived renin, promoting the activation of the local renin-angiotensin system leading to enhanced NE release and reperfusion arrhythmias. Because these beneficial effects of AC261066 occurred at the ex vivo level following oral drug treatment, our data suggest that AC261066 could be viewed as a therapeutic means to reduce I/R injury of the heart, and potentially also be considered in the treatment of other cardiovascular ailments such as chronic arrhythmias and cardiac failure.
    Print ISSN: 0022-3565
    Electronic ISSN: 1521-0103
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-03-31
    Description: Cerebral cavernous malformations (CCMs) are common inherited and sporadic vascular malformations that cause strokes and seizures in younger individuals. CCMs arise from endothelial cell loss of KRIT1, CCM2 or PDCD10, non-homologous proteins that form an adaptor complex. How disruption of the CCM complex results in disease remains controversial, with numerous signalling pathways (including Rho, SMAD and Wnt/beta-catenin) and processes such as endothelial-mesenchymal transition (EndMT) proposed to have causal roles. CCM2 binds to MEKK3 (refs 7, 8, 9, 10, 11), and we have recently shown that CCM complex regulation of MEKK3 is essential during vertebrate heart development. Here we investigate this mechanism in CCM disease pathogenesis. Using a neonatal mouse model of CCM disease, we show that expression of the MEKK3 target genes Klf2 and Klf4, as well as Rho and ADAMTS protease activity, are increased in the endothelial cells of early CCM lesions. By contrast, we find no evidence of EndMT or increased SMAD or Wnt signalling during early CCM formation. Endothelial-specific loss of Map3k3 (also known as Mekk3), Klf2 or Klf4 markedly prevents lesion formation, reverses the increase in Rho activity, and rescues lethality. Consistent with these findings in mice, we show that endothelial expression of KLF2 and KLF4 is increased in human familial and sporadic CCM lesions, and that a disease-causing human CCM2 mutation abrogates the MEKK3 interaction without affecting CCM complex formation. These studies identify gain of MEKK3 signalling and KLF2/4 function as causal mechanisms for CCM pathogenesis that may be targeted to develop new CCM therapeutics.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4864035/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4864035/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Zinan -- Tang, Alan T -- Wong, Weng-Yew -- Bamezai, Sharika -- Goddard, Lauren M -- Shenkar, Robert -- Zhou, Su -- Yang, Jisheng -- Wright, Alexander C -- Foley, Matthew -- Arthur, J Simon C -- Whitehead, Kevin J -- Awad, Issam A -- Li, Dean Y -- Zheng, Xiangjian -- Kahn, Mark L -- P01 HL075215/HL/NHLBI NIH HHS/ -- P01 HL120846/HL/NHLBI NIH HHS/ -- P01 NS092521/NS/NINDS NIH HHS/ -- P01NS092521/NS/NINDS NIH HHS/ -- R01 HL094326/HL/NHLBI NIH HHS/ -- R01HL-084516/HL/NHLBI NIH HHS/ -- R01HL094326/HL/NHLBI NIH HHS/ -- R01NS075168/NS/NINDS NIH HHS/ -- T32HL07439/HL/NHLBI NIH HHS/ -- England -- Nature. 2016 Apr 7;532(7597):122-6. doi: 10.1038/nature17178. Epub 2016 Mar 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, Pennsylvania 19104, USA. ; Laboratory of Cardiovascular Signaling, Centenary Institute, Sydney, New South Wales 2050, Australia. ; Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois 60637, USA. ; Department of Radiology, University of Pennsylvania Medical Center, 3400 Spruce Street, Philadelphia, Pennsylvania 19104, USA. ; Sydney Microscopy &Microanalysis, University of Sydney, Sydney, New South Wales 2050, Australia. ; Division of Cell Signaling and Immunology, University of Dundee, Dundee DD1 5EH, UK. ; Division of Cardiovascular Medicine and the Program in Molecular Medicine, University of Utah, Salt Lake City, Utah 84112, USA. ; The Key Laboratory for Human Disease Gene Study of Sichuan Province, Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China. ; Faculty of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales 2050, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27027284" target="_blank"〉PubMed〈/a〉
    Keywords: ADAM Proteins/metabolism ; Animals ; Animals, Newborn ; Carrier Proteins/genetics/metabolism ; Disease Models, Animal ; Endothelial Cells/enzymology/*metabolism ; Female ; Hemangioma, Cavernous, Central Nervous System/etiology/*metabolism/pathology ; Humans ; Kruppel-Like Transcription Factors/deficiency/*metabolism ; MAP Kinase Kinase Kinase 3/deficiency/*metabolism ; *MAP Kinase Signaling System ; Male ; Mice ; Protein Binding ; rho GTP-Binding Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1203
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Recent genotype-phenotype correlation studies in familial hypertrophic cardiomyopathy (FHC) have revealed that some mutations in the β-myosin heavy chain (BMHC) gene may be associated with a high incidence of sudden death and a poor prognosis. Coexistence of sudden death and end-stage heart failure in several families with FHC has recently being reported; however, the genetic basis of such families has not been clearly demonstrated. A three-generation Chinese familial hypertrophic cardiomyopathy (FHC) family (family HL1) with two cases of end-stage heart failure and three cases of sudden death was analyzed. The average age of death in the affected members in this family was 34 years old. Genetic linkage analysis using polymorphisms in the α- and β-myosin heavy chain genes revealed that FHC in this family is significantly linked to the BMHC gene without recombinations. Single-strand conformation polymorphism analysis of exons 8, 9 and 13 to 23 in the BMHC gene showed a polymorphic band on exon 14 that is in complete linkage with the disease status in this family. DNA sequencing analysis in the affected members revealed an 453Arg→Cys mutation in the BMHC gene. To our knowledge this is the first reported mutation of FHC in Chinese. Our data suggest that the 453Arg→Cys mutation is associated with a malignant clinical course in FHC due not only to sudden death but also to end-stage heart failure.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1203
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract To identify the disease locus of familial hypertrophic cardiomyopathy (FHC) in a Chinese family, a genetic linkage study was performed using polymorphisms from various chromosomal regions. This family has eight affected members, including a case with typical features of apical hypertrophic cardiomyopathy of the Japanese type. The results revealed significant evidence of linkage of polymorphisms on chromosome 11p13–q13 and FHC in this family with a maximal lod score of 3.38 at θ = 0.00. Our data suggest that the locus responsible for FHC in this family maps to chromosome 11 and that the molecular basis of FHC in the case of apical hypertrophic cardiomyopathy of the Japanese type might be similar to that of other affected members in the same family. Further studies are needed to elucidate the whole spectrum of the genetic basis of apical hypertrophic cardiomyopathy of the Japanese type.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...