Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-09
    Description: DNA methylation is a defining feature of mammalian cellular identity and is essential for normal development. Most cell types, except germ cells and pre-implantation embryos, display relatively stable DNA methylation patterns, with 70-80% of all CpGs being methylated. Despite recent advances, we still have a limited understanding of when, where and how many CpGs participate in genomic regulation. Here we report the in-depth analysis of 42 whole-genome bisulphite sequencing data sets across 30 diverse human cell and tissue types. We observe dynamic regulation for only 21.8% of autosomal CpGs within a normal developmental context, most of which are distal to transcription start sites. These dynamic CpGs co-localize with gene regulatory elements, particularly enhancers and transcription-factor-binding sites, which allow identification of key lineage-specific regulators. In addition, differentially methylated regions (DMRs) often contain single nucleotide polymorphisms associated with cell-type-related diseases as determined by genome-wide association studies. The results also highlight the general inefficiency of whole-genome bisulphite sequencing, as 70-80% of the sequencing reads across these data sets provided little or no relevant information about CpG methylation. To demonstrate further the utility of our DMR set, we use it to classify unknown samples and identify representative signature regions that recapitulate major DNA methylation dynamics. In summary, although in theory every CpG can change its methylation state, our results suggest that only a fraction does so as part of coordinated regulatory programs. Therefore, our selected DMRs can serve as a starting point to guide new, more effective reduced representation approaches to capture the most informative fraction of CpGs, as well as further pinpoint putative regulatory elements.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3821869/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3821869/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ziller, Michael J -- Gu, Hongcang -- Muller, Fabian -- Donaghey, Julie -- Tsai, Linus T-Y -- Kohlbacher, Oliver -- De Jager, Philip L -- Rosen, Evan D -- Bennett, David A -- Bernstein, Bradley E -- Gnirke, Andreas -- Meissner, Alexander -- ES017690/ES/NIEHS NIH HHS/ -- P01 GM099117/GM/NIGMS NIH HHS/ -- P01GM099117/GM/NIGMS NIH HHS/ -- P30AG10161/AG/NIA NIH HHS/ -- R01 AG017917/AG/NIA NIH HHS/ -- R01AG15819/AG/NIA NIH HHS/ -- R01AG17917/AG/NIA NIH HHS/ -- R01AG36042/AG/NIA NIH HHS/ -- U01 ES017155/ES/NIEHS NIH HHS/ -- U01ES017155/ES/NIEHS NIH HHS/ -- England -- Nature. 2013 Aug 22;500(7463):477-81. doi: 10.1038/nature12433. Epub 2013 Aug 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23925113" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; CpG Islands/genetics ; *DNA Methylation ; Enhancer Elements, Genetic/genetics ; Genome, Human/*genetics ; Genome-Wide Association Study ; Humans ; Organ Specificity ; Polymorphism, Single Nucleotide/genetics ; Sequence Analysis, DNA ; Sulfites/metabolism ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-24
    Description: Models derived from human pluripotent stem cells that accurately recapitulate neural development in vitro and allow for the generation of specific neuronal subtypes are of major interest to the stem cell and biomedical community. Notch signalling, particularly through the Notch effector HES5, is a major pathway critical for the onset and maintenance of neural progenitor cells in the embryonic and adult nervous system. Here we report the transcriptional and epigenomic analysis of six consecutive neural progenitor cell stages derived from a HES5::eGFP reporter human embryonic stem cell line. Using this system, we aimed to model cell-fate decisions including specification, expansion and patterning during the ontogeny of cortical neural stem and progenitor cells. In order to dissect regulatory mechanisms that orchestrate the stage-specific differentiation process, we developed a computational framework to infer key regulators of each cell-state transition based on the progressive remodelling of the epigenetic landscape and then validated these through a pooled short hairpin RNA screen. We were also able to refine our previous observations on epigenetic priming at transcription factor binding sites and suggest here that they are mediated by combinations of core and stage-specific factors. Taken together, we demonstrate the utility of our system and outline a general framework, not limited to the context of the neural lineage, to dissect regulatory circuits of differentiation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336237/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336237/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ziller, Michael J -- Edri, Reuven -- Yaffe, Yakey -- Donaghey, Julie -- Pop, Ramona -- Mallard, William -- Issner, Robbyn -- Gifford, Casey A -- Goren, Alon -- Xing, Jeffrey -- Gu, Hongcang -- Cacchiarelli, Davide -- Tsankov, Alexander M -- Epstein, Charles -- Rinn, John L -- Mikkelsen, Tarjei S -- Kohlbacher, Oliver -- Gnirke, Andreas -- Bernstein, Bradley E -- Elkabetz, Yechiel -- Meissner, Alexander -- F32 DK095537/DK/NIDDK NIH HHS/ -- HG006911/HG/NHGRI NIH HHS/ -- P01 GM099117/GM/NIGMS NIH HHS/ -- P01GM099117/GM/NIGMS NIH HHS/ -- U01 ES017155/ES/NIEHS NIH HHS/ -- U01ES017155/ES/NIEHS NIH HHS/ -- U54 HG006991/HG/NHGRI NIH HHS/ -- England -- Nature. 2015 Feb 19;518(7539):355-9. doi: 10.1038/nature13990. Epub 2014 Dec 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA [3] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv 6997801, Israel. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA [3] Center for Systems Biology and Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. ; Applied Bioinformatics, Center for Bioinformatics and Quantitative Biology Center, University of Tubingen, Tubingen 72076, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25533951" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Differentiation/*genetics ; Cell Lineage/genetics ; Embryonic Stem Cells/*cytology/metabolism ; Epigenesis, Genetic/*genetics ; Epigenomics/*methods ; Humans ; Neural Stem Cells/*cytology/*metabolism ; RNA, Small Interfering/analysis/genetics ; Reproducibility of Results ; Transcription Factors/metabolism ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-12-25
    Description: Gain-of-function IDH mutations are initiating events that define major clinical and prognostic classes of gliomas. Mutant IDH protein produces a new onco-metabolite, 2-hydroxyglutarate, which interferes with iron-dependent hydroxylases, including the TET family of 5'-methylcytosine hydroxylases. TET enzymes catalyse a key step in the removal of DNA methylation. IDH mutant gliomas thus manifest a CpG island methylator phenotype (G-CIMP), although the functional importance of this altered epigenetic state remains unclear. Here we show that human IDH mutant gliomas exhibit hypermethylation at cohesin and CCCTC-binding factor (CTCF)-binding sites, compromising binding of this methylation-sensitive insulator protein. Reduced CTCF binding is associated with loss of insulation between topological domains and aberrant gene activation. We specifically demonstrate that loss of CTCF at a domain boundary permits a constitutive enhancer to interact aberrantly with the receptor tyrosine kinase gene PDGFRA, a prominent glioma oncogene. Treatment of IDH mutant gliomaspheres with a demethylating agent partially restores insulator function and downregulates PDGFRA. Conversely, CRISPR-mediated disruption of the CTCF motif in IDH wild-type gliomaspheres upregulates PDGFRA and increases proliferation. Our study suggests that IDH mutations promote gliomagenesis by disrupting chromosomal topology and allowing aberrant regulatory interactions that induce oncogene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Flavahan, William A -- Drier, Yotam -- Liau, Brian B -- Gillespie, Shawn M -- Venteicher, Andrew S -- Stemmer-Rachamimov, Anat O -- Suva, Mario L -- Bernstein, Bradley E -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Jan 7;529(7584):110-4. doi: 10.1038/nature16490. Epub 2015 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA. ; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA. ; Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26700815" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; CRISPR-Cas Systems/genetics ; Cell Cycle Proteins/metabolism ; Cell Proliferation/drug effects ; Cell Transformation, Neoplastic/drug effects ; Cells, Cultured ; Chromatin/drug effects/genetics/metabolism ; Chromosomal Proteins, Non-Histone/metabolism ; CpG Islands/genetics ; DNA Methylation/drug effects/genetics ; Down-Regulation/drug effects ; Enhancer Elements, Genetic/genetics ; Epigenesis, Genetic/drug effects ; *Gene Expression Regulation, Neoplastic/drug effects ; Glioma/drug therapy/*enzymology/*genetics/pathology ; Glutarates/metabolism ; Humans ; Insulator Elements/drug effects/*genetics ; Isocitrate Dehydrogenase/chemistry/*genetics/metabolism ; Mutation/*genetics ; Oncogenes/*genetics ; Phenotype ; Protein Binding ; Receptor, Platelet-Derived Growth Factor alpha/genetics ; Repressor Proteins/metabolism ; Up-Regulation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-03-25
    Description: Multiple myeloma is an incurable malignancy of plasma cells, and its pathogenesis is poorly understood. Here we report the massively parallel sequencing of 38 tumour genomes and their comparison to matched normal DNAs. Several new and unexpected oncogenic mechanisms were suggested by the pattern of somatic mutation across the data set. These include the mutation of genes involved in protein translation (seen in nearly half of the patients), genes involved in histone methylation, and genes involved in blood coagulation. In addition, a broader than anticipated role of NF-kappaB signalling was indicated by mutations in 11 members of the NF-kappaB pathway. Of potential immediate clinical relevance, activating mutations of the kinase BRAF were observed in 4% of patients, suggesting the evaluation of BRAF inhibitors in multiple myeloma clinical trials. These results indicate that cancer genome sequencing of large collections of samples will yield new insights into cancer not anticipated by existing knowledge.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3560292/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3560292/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chapman, Michael A -- Lawrence, Michael S -- Keats, Jonathan J -- Cibulskis, Kristian -- Sougnez, Carrie -- Schinzel, Anna C -- Harview, Christina L -- Brunet, Jean-Philippe -- Ahmann, Gregory J -- Adli, Mazhar -- Anderson, Kenneth C -- Ardlie, Kristin G -- Auclair, Daniel -- Baker, Angela -- Bergsagel, P Leif -- Bernstein, Bradley E -- Drier, Yotam -- Fonseca, Rafael -- Gabriel, Stacey B -- Hofmeister, Craig C -- Jagannath, Sundar -- Jakubowiak, Andrzej J -- Krishnan, Amrita -- Levy, Joan -- Liefeld, Ted -- Lonial, Sagar -- Mahan, Scott -- Mfuko, Bunmi -- Monti, Stefano -- Perkins, Louise M -- Onofrio, Robb -- Pugh, Trevor J -- Rajkumar, S Vincent -- Ramos, Alex H -- Siegel, David S -- Sivachenko, Andrey -- Stewart, A Keith -- Trudel, Suzanne -- Vij, Ravi -- Voet, Douglas -- Winckler, Wendy -- Zimmerman, Todd -- Carpten, John -- Trent, Jeff -- Hahn, William C -- Garraway, Levi A -- Meyerson, Matthew -- Lander, Eric S -- Getz, Gad -- Golub, Todd R -- K12 CA133250/CA/NCI NIH HHS/ -- R01 AG020686/AG/NIA NIH HHS/ -- R01 AG020686-07/AG/NIA NIH HHS/ -- R01 CA133115/CA/NCI NIH HHS/ -- R01 CA133115-04/CA/NCI NIH HHS/ -- R01 CA133966/CA/NCI NIH HHS/ -- R01 CA133966-03/CA/NCI NIH HHS/ -- England -- Nature. 2011 Mar 24;471(7339):467-72. doi: 10.1038/nature09837.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Eli and Edythe L. Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02412, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21430775" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Blood Coagulation/genetics ; CpG Islands/genetics ; DNA Mutational Analysis ; DNA Repair/genetics ; Exons/genetics ; Exosome Multienzyme Ribonuclease Complex ; Genome, Human/*genetics ; Genomics ; Histones/metabolism ; Homeodomain Proteins/genetics ; Homeostasis/genetics ; Humans ; Methylation ; Models, Molecular ; Molecular Sequence Data ; Multiple Myeloma/drug therapy/enzymology/*genetics/metabolism ; Mutation/*genetics ; NF-kappa B/metabolism ; Oncogenes/genetics ; Open Reading Frames/genetics ; Protein Biosynthesis/genetics ; Protein Conformation ; Proto-Oncogene Proteins B-raf/antagonists & inhibitors/genetics/metabolism ; RNA Processing, Post-Transcriptional/genetics ; Ribonucleases/chemistry/genetics ; Signal Transduction/genetics ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-03-29
    Description: Chromatin profiling has emerged as a powerful means of genome annotation and detection of regulatory activity. The approach is especially well suited to the characterization of non-coding portions of the genome, which critically contribute to cellular phenotypes yet remain largely uncharted. Here we map nine chromatin marks across nine cell types to systematically characterize regulatory elements, their cell-type specificities and their functional interactions. Focusing on cell-type-specific patterns of promoters and enhancers, we define multicell activity profiles for chromatin state, gene expression, regulatory motif enrichment and regulator expression. We use correlations between these profiles to link enhancers to putative target genes, and predict the cell-type-specific activators and repressors that modulate them. The resulting annotations and regulatory predictions have implications for the interpretation of genome-wide association studies. Top-scoring disease single nucleotide polymorphisms are frequently positioned within enhancer elements specifically active in relevant cell types, and in some cases affect a motif instance for a predicted regulator, thus suggesting a mechanism for the association. Our study presents a general framework for deciphering cis-regulatory connections and their roles in disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088773/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088773/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ernst, Jason -- Kheradpour, Pouya -- Mikkelsen, Tarjei S -- Shoresh, Noam -- Ward, Lucas D -- Epstein, Charles B -- Zhang, Xiaolan -- Wang, Li -- Issner, Robbyn -- Coyne, Michael -- Ku, Manching -- Durham, Timothy -- Kellis, Manolis -- Bernstein, Bradley E -- R01 HG004037/HG/NHGRI NIH HHS/ -- R01HG004037/HG/NHGRI NIH HHS/ -- RC1HG005334/HG/NHGRI NIH HHS/ -- U54 HG004570/HG/NHGRI NIH HHS/ -- U54 HG004570-01/HG/NHGRI NIH HHS/ -- U54 HG004570-02/HG/NHGRI NIH HHS/ -- U54 HG004570-02S1/HG/NHGRI NIH HHS/ -- U54 HG004570-03/HG/NHGRI NIH HHS/ -- U54 HG004570-03S1/HG/NHGRI NIH HHS/ -- U54 HG004570-04/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 May 5;473(7345):43-9. doi: 10.1038/nature09906. Epub 2011 Mar 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21441907" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Line ; Cell Line, Tumor ; *Cell Physiological Phenomena ; Cells, Cultured ; Chromatin/*genetics/*metabolism ; *Chromosome Mapping ; Gene Expression Regulation ; Genome, Human/genetics ; Hep G2 Cells ; Humans ; Promoter Regions, Genetic/genetics ; Reproducibility of Results ; Transcription Factors/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-07-24
    Description: The identification of somatic activating mutations in JAK2 (refs 1-4) and in the thrombopoietin receptor gene (MPL) in most patients with myeloproliferative neoplasm (MPN) led to the clinical development of JAK2 kinase inhibitors. JAK2 inhibitor therapy improves MPN-associated splenomegaly and systemic symptoms but does not significantly decrease or eliminate the MPN clone in most patients with MPN. We therefore sought to characterize mechanisms by which MPN cells persist despite chronic inhibition of JAK2. Here we show that JAK2 inhibitor persistence is associated with reactivation of JAK-STAT signalling and with heterodimerization between activated JAK2 and JAK1 or TYK2, consistent with activation of JAK2 in trans by other JAK kinases. Further, this phenomenon is reversible: JAK2 inhibitor withdrawal is associated with resensitization to JAK2 kinase inhibitors and with reversible changes in JAK2 expression. We saw increased JAK2 heterodimerization and sustained JAK2 activation in cell lines, in murine models and in patients treated with JAK2 inhibitors. RNA interference and pharmacological studies show that JAK2-inhibitor-persistent cells remain dependent on JAK2 protein expression. Consequently, therapies that result in JAK2 degradation retain efficacy in persistent cells and may provide additional benefit to patients with JAK2-dependent malignancies treated with JAK2 inhibitors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991463/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991463/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koppikar, Priya -- Bhagwat, Neha -- Kilpivaara, Outi -- Manshouri, Taghi -- Adli, Mazhar -- Hricik, Todd -- Liu, Fan -- Saunders, Lindsay M -- Mullally, Ann -- Abdel-Wahab, Omar -- Leung, Laura -- Weinstein, Abby -- Marubayashi, Sachie -- Goel, Aviva -- Gonen, Mithat -- Estrov, Zeev -- Ebert, Benjamin L -- Chiosis, Gabriela -- Nimer, Stephen D -- Bernstein, Bradley E -- Verstovsek, Srdan -- Levine, Ross L -- 1R01CA151949-01/CA/NCI NIH HHS/ -- P30 CA016672/CA/NCI NIH HHS/ -- R01 CA151949/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Sep 6;489(7414):155-9. doi: 10.1038/nature11303.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22820254" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Disease Models, Animal ; Drug Resistance, Neoplasm/drug effects ; Enzyme Activation/drug effects ; Gene Knockdown Techniques ; Granulocytes/drug effects/enzymology/metabolism ; HSP90 Heat-Shock Proteins/antagonists & inhibitors/metabolism ; Humans ; Janus Kinase 1/biosynthesis/deficiency/genetics/metabolism ; Janus Kinase 2/*antagonists & inhibitors/deficiency/genetics/*metabolism ; Mice ; Myeloproliferative Disorders/*drug therapy/enzymology/metabolism/pathology ; Phosphorylation ; Protein Biosynthesis ; *Protein Multimerization ; RNA Interference ; STAT Transcription Factors/*metabolism ; *Signal Transduction/drug effects ; TYK2 Kinase/biosynthesis/deficiency/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-08-29
    Description: Genome function is dynamically regulated in part by chromatin, which consists of the histones, non-histone proteins and RNA molecules that package DNA. Studies in Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular mechanisms of genome function in humans, and have revealed conservation of chromatin components and mechanisms. Nevertheless, the three organisms have markedly different genome sizes, chromosome architecture and gene organization. On human and fly chromosomes, for example, pericentric heterochromatin flanks single centromeres, whereas worm chromosomes have dispersed heterochromatin-like regions enriched in the distal chromosomal 'arms', and centromeres distributed along their lengths. To systematically investigate chromatin organization and associated gene regulation across species, we generated and analysed a large collection of genome-wide chromatin data sets from cell lines and developmental stages in worm, fly and human. Here we present over 800 new data sets from our ENCODE and modENCODE consortia, bringing the total to over 1,400. Comparison of combinatorial patterns of histone modifications, nuclear lamina-associated domains, organization of large-scale topological domains, chromatin environment at promoters and enhancers, nucleosome positioning, and DNA replication patterns reveals many conserved features of chromatin organization among the three organisms. We also find notable differences in the composition and locations of repressive chromatin. These data sets and analyses provide a rich resource for comparative and species-specific investigations of chromatin composition, organization and function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227084/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227084/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ho, Joshua W K -- Jung, Youngsook L -- Liu, Tao -- Alver, Burak H -- Lee, Soohyun -- Ikegami, Kohta -- Sohn, Kyung-Ah -- Minoda, Aki -- Tolstorukov, Michael Y -- Appert, Alex -- Parker, Stephen C J -- Gu, Tingting -- Kundaje, Anshul -- Riddle, Nicole C -- Bishop, Eric -- Egelhofer, Thea A -- Hu, Sheng'en Shawn -- Alekseyenko, Artyom A -- Rechtsteiner, Andreas -- Asker, Dalal -- Belsky, Jason A -- Bowman, Sarah K -- Chen, Q Brent -- Chen, Ron A-J -- Day, Daniel S -- Dong, Yan -- Dose, Andrea C -- Duan, Xikun -- Epstein, Charles B -- Ercan, Sevinc -- Feingold, Elise A -- Ferrari, Francesco -- Garrigues, Jacob M -- Gehlenborg, Nils -- Good, Peter J -- Haseley, Psalm -- He, Daniel -- Herrmann, Moritz -- Hoffman, Michael M -- Jeffers, Tess E -- Kharchenko, Peter V -- Kolasinska-Zwierz, Paulina -- Kotwaliwale, Chitra V -- Kumar, Nischay -- Langley, Sasha A -- Larschan, Erica N -- Latorre, Isabel -- Libbrecht, Maxwell W -- Lin, Xueqiu -- Park, Richard -- Pazin, Michael J -- Pham, Hoang N -- Plachetka, Annette -- Qin, Bo -- Schwartz, Yuri B -- Shoresh, Noam -- Stempor, Przemyslaw -- Vielle, Anne -- Wang, Chengyang -- Whittle, Christina M -- Xue, Huiling -- Kingston, Robert E -- Kim, Ju Han -- Bernstein, Bradley E -- Dernburg, Abby F -- Pirrotta, Vincenzo -- Kuroda, Mitzi I -- Noble, William S -- Tullius, Thomas D -- Kellis, Manolis -- MacAlpine, David M -- Strome, Susan -- Elgin, Sarah C R -- Liu, Xiaole Shirley -- Lieb, Jason D -- Ahringer, Julie -- Karpen, Gary H -- Park, Peter J -- 092096/Wellcome Trust/United Kingdom -- 101863/Wellcome Trust/United Kingdom -- 54523/Wellcome Trust/United Kingdom -- 5RL9EB008539/EB/NIBIB NIH HHS/ -- K99 HG006259/HG/NHGRI NIH HHS/ -- K99HG006259/HG/NHGRI NIH HHS/ -- R01 GM098461/GM/NIGMS NIH HHS/ -- R01 HG004037/HG/NHGRI NIH HHS/ -- R37 GM048405/GM/NIGMS NIH HHS/ -- T32 GM071340/GM/NIGMS NIH HHS/ -- T32 HG002295/HG/NHGRI NIH HHS/ -- U01 HG004258/HG/NHGRI NIH HHS/ -- U01 HG004270/HG/NHGRI NIH HHS/ -- U01 HG004279/HG/NHGRI NIH HHS/ -- U01 HG004695/HG/NHGRI NIH HHS/ -- U01HG004258/HG/NHGRI NIH HHS/ -- U01HG004270/HG/NHGRI NIH HHS/ -- U01HG004279/HG/NHGRI NIH HHS/ -- U01HG004695/HG/NHGRI NIH HHS/ -- U54 CA121852/CA/NCI NIH HHS/ -- U54 HG004570/HG/NHGRI NIH HHS/ -- U54 HG006991/HG/NHGRI NIH HHS/ -- U54CA121852/CA/NCI NIH HHS/ -- U54HG004570/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Aug 28;512(7515):449-52. doi: 10.1038/nature13415.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [3] [4] Victor Chang Cardiac Research Institute and The University of New South Wales, Sydney, New South Wales 2052, Australia (J.W.K.H.); Department of Biochemistry, University at Buffalo, Buffalo, New York 14203, USA (T.L.); Department of Molecular Biology and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA (K.I., T.E.J.); Department of Human Genetics, University of Chicago, Chicago, Illinois 06037, USA (J.D.L.); Division of Genomic Technologies, Center for Life Science Technologies, RIKEN, Yokohama 230-0045, Japan (A.M.); Department of Genetics, Department of Computer Science, Stanford University, Stanford, California 94305, USA (A.K.); Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA (N.C.R.). ; 1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [3]. ; 1] Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, 450 Brookline Avenue, Boston, Massachusetts 02215, USA [3] [4] Victor Chang Cardiac Research Institute and The University of New South Wales, Sydney, New South Wales 2052, Australia (J.W.K.H.); Department of Biochemistry, University at Buffalo, Buffalo, New York 14203, USA (T.L.); Department of Molecular Biology and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA (K.I., T.E.J.); Department of Human Genetics, University of Chicago, Chicago, Illinois 06037, USA (J.D.L.); Division of Genomic Technologies, Center for Life Science Technologies, RIKEN, Yokohama 230-0045, Japan (A.M.); Department of Genetics, Department of Computer Science, Stanford University, Stanford, California 94305, USA (A.K.); Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA (N.C.R.). ; Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Department of Biology and Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA [2] Victor Chang Cardiac Research Institute and The University of New South Wales, Sydney, New South Wales 2052, Australia (J.W.K.H.); Department of Biochemistry, University at Buffalo, Buffalo, New York 14203, USA (T.L.); Department of Molecular Biology and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA (K.I., T.E.J.); Department of Human Genetics, University of Chicago, Chicago, Illinois 06037, USA (J.D.L.); Division of Genomic Technologies, Center for Life Science Technologies, RIKEN, Yokohama 230-0045, Japan (A.M.); Department of Genetics, Department of Computer Science, Stanford University, Stanford, California 94305, USA (A.K.); Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA (N.C.R.). ; 1] Department of Information and Computer Engineering, Ajou University, Suwon 443-749, Korea [2] Systems Biomedical Informatics Research Center, College of Medicine, Seoul National University, Seoul 110-799, Korea. ; 1] Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, USA [2] Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA [3] Victor Chang Cardiac Research Institute and The University of New South Wales, Sydney, New South Wales 2052, Australia (J.W.K.H.); Department of Biochemistry, University at Buffalo, Buffalo, New York 14203, USA (T.L.); Department of Molecular Biology and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA (K.I., T.E.J.); Department of Human Genetics, University of Chicago, Chicago, Illinois 06037, USA (J.D.L.); Division of Genomic Technologies, Center for Life Science Technologies, RIKEN, Yokohama 230-0045, Japan (A.M.); Department of Genetics, Department of Computer Science, Stanford University, Stanford, California 94305, USA (A.K.); Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA (N.C.R.). ; 1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA. ; The Gurdon Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK. ; 1] National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland 20892, USA [2] National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, USA. ; 1] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Broad Institute, Cambridge, Massachusetts 02141, USA [3] Victor Chang Cardiac Research Institute and The University of New South Wales, Sydney, New South Wales 2052, Australia (J.W.K.H.); Department of Biochemistry, University at Buffalo, Buffalo, New York 14203, USA (T.L.); Department of Molecular Biology and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA (K.I., T.E.J.); Department of Human Genetics, University of Chicago, Chicago, Illinois 06037, USA (J.D.L.); Division of Genomic Technologies, Center for Life Science Technologies, RIKEN, Yokohama 230-0045, Japan (A.M.); Department of Genetics, Department of Computer Science, Stanford University, Stanford, California 94305, USA (A.K.); Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA (N.C.R.). ; 1] Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, USA [2] Victor Chang Cardiac Research Institute and The University of New South Wales, Sydney, New South Wales 2052, Australia (J.W.K.H.); Department of Biochemistry, University at Buffalo, Buffalo, New York 14203, USA (T.L.); Department of Molecular Biology and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA (K.I., T.E.J.); Department of Human Genetics, University of Chicago, Chicago, Illinois 06037, USA (J.D.L.); Division of Genomic Technologies, Center for Life Science Technologies, RIKEN, Yokohama 230-0045, Japan (A.M.); Department of Genetics, Department of Computer Science, Stanford University, Stanford, California 94305, USA (A.K.); Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA (N.C.R.). ; 1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Program in Bioinformatics, Boston University, Boston, Massachusetts 02215, USA. ; Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA. ; Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai 200092, China. ; 1] Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA [2] Food Science and Technology Department, Faculty of Agriculture, Alexandria University, 21545 El-Shatby, Alexandria, Egypt. ; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA. ; Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA. ; Department of Biology and Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA. ; 1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Harvard/MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, USA. ; Department of Anatomy Physiology and Cell Biology, University of California Davis, Davis, California 95616, USA. ; Broad Institute, Cambridge, Massachusetts 02141, USA. ; 1] Department of Biology and Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA [2] Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA. ; National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; 1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Broad Institute, Cambridge, Massachusetts 02141, USA. ; 1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA. ; Princess Margaret Cancer Centre, Toronto, Ontario M6G 1L7, Canada. ; 1] Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA [2] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA. ; 1] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Broad Institute, Cambridge, Massachusetts 02141, USA. ; 1] Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, USA [2] Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA. ; Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA. ; Department of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA. ; 1] Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, USA [2] Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA [3] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA. ; 1] Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA [2] Department of Molecular Biology, Umea University, 901 87 Umea, Sweden. ; 1] Systems Biomedical Informatics Research Center, College of Medicine, Seoul National University, Seoul 110-799, Korea [2] Seoul National University Biomedical Informatics, Division of Biomedical Informatics, College of Medicine, Seoul National University, Seoul 110-799, Korea. ; 1] Broad Institute, Cambridge, Massachusetts 02141, USA [2] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA [3] Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA. ; Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA. ; 1] Department of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA [2] Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA. ; 1] Program in Bioinformatics, Boston University, Boston, Massachusetts 02215, USA [2] Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA. ; 1] Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, 450 Brookline Avenue, Boston, Massachusetts 02215, USA [3] Broad Institute, Cambridge, Massachusetts 02141, USA. ; 1] Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Informatics Program, Children's Hospital, Boston, Massachusetts 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25164756" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/*cytology/*genetics ; Cell Line ; Centromere/genetics/metabolism ; Chromatin/chemistry/*genetics/*metabolism ; Chromatin Assembly and Disassembly/genetics ; DNA Replication/genetics ; Drosophila melanogaster/*cytology/*genetics ; Enhancer Elements, Genetic/genetics ; Epigenesis, Genetic ; Heterochromatin/chemistry/genetics/metabolism ; Histones/chemistry/metabolism ; Humans ; Molecular Sequence Annotation ; Nuclear Lamina/metabolism ; Nucleosomes/chemistry/genetics/metabolism ; Promoter Regions, Genetic/genetics ; Species Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-11-05
    Description: Genome-wide association studies have identified loci underlying human diseases, but the causal nucleotide changes and mechanisms remain largely unknown. Here we developed a fine-mapping algorithm to identify candidate causal variants for 21 autoimmune diseases from genotyping data. We integrated these predictions with transcription and cis-regulatory element annotations, derived by mapping RNA and chromatin in primary immune cells, including resting and stimulated CD4(+) T-cell subsets, regulatory T cells, CD8(+) T cells, B cells, and monocytes. We find that approximately 90% of causal variants are non-coding, with approximately 60% mapping to immune-cell enhancers, many of which gain histone acetylation and transcribe enhancer-associated RNA upon immune stimulation. Causal variants tend to occur near binding sites for master regulators of immune differentiation and stimulus-dependent gene activation, but only 10-20% directly alter recognizable transcription factor binding motifs. Rather, most non-coding risk variants, including those that alter gene expression, affect non-canonical sequence determinants not well-explained by current gene regulatory models.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336207/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336207/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Farh, Kyle Kai-How -- Marson, Alexander -- Zhu, Jiang -- Kleinewietfeld, Markus -- Housley, William J -- Beik, Samantha -- Shoresh, Noam -- Whitton, Holly -- Ryan, Russell J H -- Shishkin, Alexander A -- Hatan, Meital -- Carrasco-Alfonso, Marlene J -- Mayer, Dita -- Luckey, C John -- Patsopoulos, Nikolaos A -- De Jager, Philip L -- Kuchroo, Vijay K -- Epstein, Charles B -- Daly, Mark J -- Hafler, David A -- Bernstein, Bradley E -- 12-0089/Worldwide Cancer Research/United Kingdom -- AI039671/AI/NIAID NIH HHS/ -- AI045757/AI/NIAID NIH HHS/ -- AI046130/AI/NIAID NIH HHS/ -- AI070352/AI/NIAID NIH HHS/ -- ES017155/ES/NIEHS NIH HHS/ -- GM093080/GM/NIGMS NIH HHS/ -- HG004570/HG/NHGRI NIH HHS/ -- NS067305/NS/NINDS NIH HHS/ -- NS24247/NS/NINDS NIH HHS/ -- P01 AI039671/AI/NIAID NIH HHS/ -- P01 AI045757/AI/NIAID NIH HHS/ -- P30 DK063720/DK/NIDDK NIH HHS/ -- R01 NS024247/NS/NINDS NIH HHS/ -- R37 NS024247/NS/NINDS NIH HHS/ -- T32 GM007748/GM/NIGMS NIH HHS/ -- U01 ES017155/ES/NIEHS NIH HHS/ -- U19 AI046130/AI/NIAID NIH HHS/ -- U19 AI070352/AI/NIAID NIH HHS/ -- U54 HG004570/HG/NHGRI NIH HHS/ -- U54 HG006991/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Feb 19;518(7539):337-43. doi: 10.1038/nature13835. Epub 2014 Oct 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. ; Diabetes Center and Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, California 94143, USA. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA [3] Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA [4] Center for Systems Biology and Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut 06511, USA. ; Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut 06511, USA. ; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] California Institute of Technology, 1200 E California Boulevard, Pasadena, California 91125, USA. ; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02142, USA [3] Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02142, USA. ; Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25363779" target="_blank"〉PubMed〈/a〉
    Keywords: Autoimmune Diseases/*genetics/immunology/pathology ; Base Sequence ; Chromatin/genetics ; Consensus Sequence/genetics ; Enhancer Elements, Genetic/genetics ; Epigenesis, Genetic/*genetics ; Epigenomics ; Genome-Wide Association Study ; Humans ; Nucleotide Motifs ; Organ Specificity ; Polymorphism, Single Nucleotide/*genetics ; T-Lymphocytes/immunology/metabolism ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-05-07
    Description: Different combinations of histone modifications have been proposed to signal distinct gene regulatory functions, but this area is poorly addressed by existing technologies. We applied high-throughput single-molecule imaging to decode combinatorial modifications on millions of individual nucleosomes from pluripotent stem cells and lineage-committed cells. We identified definitively bivalent nucleosomes with concomitant repressive and activating marks, as well as other combinatorial modification states whose prevalence varies with developmental potency. We showed that genetic and chemical perturbations of chromatin enzymes preferentially affect nucleosomes harboring specific modification states. Last, we combined this proteomic platform with single-molecule DNA sequencing technology to simultaneously determine the modification states and genomic positions of individual nucleosomes. This single-molecule technology has the potential to address fundamental questions in chromatin biology and epigenetic regulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shema, Efrat -- Jones, Daniel -- Shoresh, Noam -- Donohue, Laura -- Ram, Oren -- Bernstein, Bradley E -- R44HG005279/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 May 6;352(6286):717-21. doi: 10.1126/science.aad7701.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; SeqLL, Woburn, MA 01801, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. bernstein.bradley@mgh.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27151869" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-02-20
    Description: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530010/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530010/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roadmap Epigenomics Consortium -- Kundaje, Anshul -- Meuleman, Wouter -- Ernst, Jason -- Bilenky, Misha -- Yen, Angela -- Heravi-Moussavi, Alireza -- Kheradpour, Pouya -- Zhang, Zhizhuo -- Wang, Jianrong -- Ziller, Michael J -- Amin, Viren -- Whitaker, John W -- Schultz, Matthew D -- Ward, Lucas D -- Sarkar, Abhishek -- Quon, Gerald -- Sandstrom, Richard S -- Eaton, Matthew L -- Wu, Yi-Chieh -- Pfenning, Andreas R -- Wang, Xinchen -- Claussnitzer, Melina -- Liu, Yaping -- Coarfa, Cristian -- Harris, R Alan -- Shoresh, Noam -- Epstein, Charles B -- Gjoneska, Elizabeta -- Leung, Danny -- Xie, Wei -- Hawkins, R David -- Lister, Ryan -- Hong, Chibo -- Gascard, Philippe -- Mungall, Andrew J -- Moore, Richard -- Chuah, Eric -- Tam, Angela -- Canfield, Theresa K -- Hansen, R Scott -- Kaul, Rajinder -- Sabo, Peter J -- Bansal, Mukul S -- Carles, Annaick -- Dixon, Jesse R -- Farh, Kai-How -- Feizi, Soheil -- Karlic, Rosa -- Kim, Ah-Ram -- Kulkarni, Ashwinikumar -- Li, Daofeng -- Lowdon, Rebecca -- Elliott, GiNell -- Mercer, Tim R -- Neph, Shane J -- Onuchic, Vitor -- Polak, Paz -- Rajagopal, Nisha -- Ray, Pradipta -- Sallari, Richard C -- Siebenthall, Kyle T -- Sinnott-Armstrong, Nicholas A -- Stevens, Michael -- Thurman, Robert E -- Wu, Jie -- Zhang, Bo -- Zhou, Xin -- Beaudet, Arthur E -- Boyer, Laurie A -- De Jager, Philip L -- Farnham, Peggy J -- Fisher, Susan J -- Haussler, David -- Jones, Steven J M -- Li, Wei -- Marra, Marco A -- McManus, Michael T -- Sunyaev, Shamil -- Thomson, James A -- Tlsty, Thea D -- Tsai, Li-Huei -- Wang, Wei -- Waterland, Robert A -- Zhang, Michael Q -- Chadwick, Lisa H -- Bernstein, Bradley E -- Costello, Joseph F -- Ecker, Joseph R -- Hirst, Martin -- Meissner, Alexander -- Milosavljevic, Aleksandar -- Ren, Bing -- Stamatoyannopoulos, John A -- Wang, Ting -- Kellis, Manolis -- 5R24HD000836/HD/NICHD NIH HHS/ -- ES017166/ES/NIEHS NIH HHS/ -- F32 HL110473/HL/NHLBI NIH HHS/ -- F32HL110473/HL/NHLBI NIH HHS/ -- K99 HL119617/HL/NHLBI NIH HHS/ -- K99HL119617/HL/NHLBI NIH HHS/ -- P01 DA008227/DA/NIDA NIH HHS/ -- P30AG10161/AG/NIA NIH HHS/ -- P50 MH096890/MH/NIMH NIH HHS/ -- R01 AG015819/AG/NIA NIH HHS/ -- R01 AG017917/AG/NIA NIH HHS/ -- R01 ES024984/ES/NIEHS NIH HHS/ -- R01 ES024992/ES/NIEHS NIH HHS/ -- R01 HG004037/HG/NHGRI NIH HHS/ -- R01 HG007175/HG/NHGRI NIH HHS/ -- R01 HG007354/HG/NHGRI NIH HHS/ -- R01AG15819/AG/NIA NIH HHS/ -- R01AG17917/AG/NIA NIH HHS/ -- R01HG004037/HG/NHGRI NIH HHS/ -- R01HG004037-S1/HG/NHGRI NIH HHS/ -- R01NS078839/NS/NINDS NIH HHS/ -- RC1HG005334/HG/NHGRI NIH HHS/ -- RF1 AG015819/AG/NIA NIH HHS/ -- T32 ES007032/ES/NIEHS NIH HHS/ -- T32 GM007198/GM/NIGMS NIH HHS/ -- T32 GM007266/GM/NIGMS NIH HHS/ -- T32 GM081739/GM/NIGMS NIH HHS/ -- U01 ES017154/ES/NIEHS NIH HHS/ -- U01AG46152/AG/NIA NIH HHS/ -- U01DA025956/DA/NIDA NIH HHS/ -- U01ES017154/ES/NIEHS NIH HHS/ -- U01ES017155/ES/NIEHS NIH HHS/ -- U01ES017156/ES/NIEHS NIH HHS/ -- U01ES017166/ES/NIEHS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Feb 19;518(7539):317-30. doi: 10.1038/nature14248.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [3] Department of Genetics, Department of Computer Science, 300 Pasteur Dr., Lane Building, L301, Stanford, California 94305-5120, USA. ; 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. ; 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [3] Department of Biological Chemistry, University of California, Los Angeles, 615 Charles E Young Dr South, Los Angeles, California 90095, USA. ; Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada. ; 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] Department of Stem Cell and Regenerative Biology, 7 Divinity Ave, Cambridge, Massachusetts 02138, USA. ; Epigenome Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. ; Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, Moores Cancer Center, Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. ; Genomic Analysis Laboratory, Howard Hughes Medical Institute &The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, California 92037, USA. ; Department of Genome Sciences, University of Washington, 3720 15th Ave. NE, Seattle, Washington 98195, USA. ; 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [3] Biology Department, Massachusetts Institute of Technology, 31 Ames St, Cambridge, Massachusetts 02142, USA. ; The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. ; 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, Massachusetts 02139, USA. ; 1] Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, Moores Cancer Center, Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. [2] Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, California 92093, USA. ; Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1450 3rd Street, San Francisco, California 94158, USA. ; Department of Pathology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, California 94143-0511, USA. ; Department of Medicine, Division of Medical Genetics, University of Washington, 2211 Elliot Avenue, Seattle, Washington 98121, USA. ; 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [3] Department of Computer Science &Engineering, University of Connecticut, 371 Fairfield Way, Storrs, Connecticut 06269, USA. ; Department of Microbiology and Immunology and Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, British Columbia V6T 1Z4, Canada. ; Bioinformatics Group, Department of Molecular Biology, Division of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia. ; Department of Molecular and Cell Biology, Center for Systems Biology, The University of Texas, Dallas, NSERL, RL10, 800 W Campbell Road, Richardson, Texas 75080, USA. ; Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University in St Louis, 4444 Forest Park Ave, St Louis, Missouri 63108, USA. ; Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia. ; 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] Brigham &Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, USA. ; 1] Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University in St Louis, 4444 Forest Park Ave, St Louis, Missouri 63108, USA. [2] Department of Computer Science and Engineeering, Washington University in St. Louis, St. Louis, Missouri 63130, USA. ; 1] Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794-3600, USA. [2] Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA. ; Molecular and Human Genetics Department, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. ; Biology Department, Massachusetts Institute of Technology, 31 Ames St, Cambridge, Massachusetts 02142, USA. ; 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] Brigham &Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, USA. [3] Harvard Medical School, 25 Shattuck St, Boston, Massachusetts 02115, USA. ; Department of Biochemistry, Keck School of Medicine, University of Southern California, 1450 Biggy Street, Los Angeles, California 90089-9601, USA. ; ObGyn, Reproductive Sciences, University of California San Francisco, 35 Medical Center Way, San Francisco, California 94143, USA. ; Center for Biomolecular Sciences and Engineering, University of Santa Cruz, 1156 High Street, Santa Cruz, California 95064, USA. ; 1] Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada. [2] Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada. [3] Department of Medical Genetics, University of British Columbia, 2329 West Mall, Vancouver, BC, Canada, V6T 1Z4. ; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. ; 1] Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada. [2] Department of Medical Genetics, University of British Columbia, 2329 West Mall, Vancouver, BC, Canada, V6T 1Z4. ; Department of Microbiology and Immunology, Diabetes Center, University of California, San Francisco, 513 Parnassus Ave, San Francisco, California 94143-0534, USA. ; 1] University of Wisconsin, Madison, Wisconsin 53715, USA. [2] Morgridge Institute for Research, 330 N. Orchard Street, Madison, Wisconsin 53707, USA. ; USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Houston, Texas 77030, USA. ; 1] Department of Molecular and Cell Biology, Center for Systems Biology, The University of Texas, Dallas, NSERL, RL10, 800 W Campbell Road, Richardson, Texas 75080, USA. [2] Bioinformatics Division, Center for Synthetic and Systems Biology, TNLIST, Tsinghua University, Beijing 100084, China. ; National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, North Carolina 27709, USA. ; 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] Massachusetts General Hospital, 55 Fruit St, Boston, Massachusetts 02114, USA. [3] Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815-6789, USA. ; 1] Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada. [2] Department of Microbiology and Immunology and Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, British Columbia V6T 1Z4, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25693563" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cell Lineage/genetics ; Cells, Cultured ; Chromatin/chemistry/genetics/metabolism ; Chromosomes, Human/chemistry/genetics/metabolism ; DNA/chemistry/genetics/metabolism ; DNA Methylation ; Datasets as Topic ; Enhancer Elements, Genetic/genetics ; Epigenesis, Genetic/*genetics ; *Epigenomics ; Genetic Variation/genetics ; Genome, Human/*genetics ; Genome-Wide Association Study ; Histones/metabolism ; Humans ; Organ Specificity/genetics ; RNA/genetics ; Reference Values
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...