Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-14
    Description: Middle East respiratory syndrome coronavirus (MERS-CoV) has represented a human health threat since 2012. Although several MERS-related CoVs that belong to the same species as MERS-CoV have been identified from bats, they do not use the MERS-CoV receptor, dipeptidyl peptidase 4 (DPP4). Here, we screened 1,059 bat samples from at least 30 bat species collected in different regions in south China and identified 89 strains of lineage C betacoronaviruses, including Tylonycteris pachypus coronavirus HKU4 , Pipistrellus pipistrellus coronavirus HKU5 , and MERS-related CoVs. We sequenced the full-length genomes of two positive samples collected from the great evening bat, Ia io , from Guangdong Province. The two genomes were highly similar and exhibited genomic structures identical to those of other lineage C betacoronaviruses. While they exhibited genome-wide nucleotide identities of only 75.3 to 81.2% with other MERS-related CoVs, their gene-coding regions were highly similar to their counterparts, except in the case of the spike proteins. Further protein-protein interaction assays demonstrated that the spike proteins of these MERS-related CoVs bind to the receptor DPP4. Recombination analysis suggested that the newly discovered MERS-related CoVs have acquired their spike genes from a DPP4-recognizing bat coronavirus HKU4. Our study provides further evidence that bats represent the evolutionary origins of MERS-CoV. IMPORTANCE Previous studies suggested that MERS-CoV originated in bats. However, its evolutionary path from bats to humans remains unclear. In this study, we discovered 89 novel lineage C betacoronaviruses in eight bat species. We provide evidence of a MERS-related CoV derived from the great evening bat that uses the same host receptor as human MERS-CoV. This virus also provides evidence for a natural recombination event between the bat MERS-related CoV and another bat coronavirus, HKU4. Our study expands the host ranges of MERS-related CoV and represents an important step toward establishing bats as the natural reservoir of MERS-CoV. These findings may lead to improved epidemiological surveillance of MERS-CoV and the prevention and control of the spread of MERS-CoV to humans.
    Print ISSN: 0022-538X
    Electronic ISSN: 1098-5514
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2012-08-17
    Description: Inactivation of tumour-suppressor genes by homozygous deletion is a prototypic event in the cancer genome, yet such deletions often encompass neighbouring genes. We propose that homozygous deletions in such passenger genes can expose cancer-specific therapeutic vulnerabilities when the collaterally deleted gene is a member of a functionally redundant family of genes carrying out an essential function. The glycolytic gene enolase 1 (ENO1) in the 1p36 locus is deleted in glioblastoma (GBM), which is tolerated by the expression of ENO2. Here we show that short-hairpin-RNA-mediated silencing of ENO2 selectively inhibits growth, survival and the tumorigenic potential of ENO1-deleted GBM cells, and that the enolase inhibitor phosphonoacetohydroxamate is selectively toxic to ENO1-deleted GBM cells relative to ENO1-intact GBM cells or normal astrocytes. The principle of collateral vulnerability should be applicable to other passenger-deleted genes encoding functionally redundant essential activities and provide an effective treatment strategy for cancers containing such genomic events.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712624/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712624/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muller, Florian L -- Colla, Simona -- Aquilanti, Elisa -- Manzo, Veronica E -- Genovese, Giannicola -- Lee, Jaclyn -- Eisenson, Daniel -- Narurkar, Rujuta -- Deng, Pingna -- Nezi, Luigi -- Lee, Michelle A -- Hu, Baoli -- Hu, Jian -- Sahin, Ergun -- Ong, Derrick -- Fletcher-Sananikone, Eliot -- Ho, Dennis -- Kwong, Lawrence -- Brennan, Cameron -- Wang, Y Alan -- Chin, Lynda -- DePinho, Ronald A -- 3 P01 CA095616-08S1/CA/NCI NIH HHS/ -- 57006984/Howard Hughes Medical Institute/ -- P01 CA095616/CA/NCI NIH HHS/ -- P01CA95616/CA/NCI NIH HHS/ -- T32-CA009361/CA/NCI NIH HHS/ -- England -- Nature. 2012 Aug 16;488(7411):337-42. doi: 10.1038/nature11331.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22895339" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/pharmacology/therapeutic use ; Biomarkers, Tumor/deficiency/genetics ; Brain Neoplasms/*drug therapy/*genetics/pathology ; Cell Line, Tumor ; Cell Proliferation ; Chromosomes, Human, Pair 1/genetics ; DNA-Binding Proteins/deficiency/genetics ; Enzyme Inhibitors ; Gene Expression Regulation, Neoplastic ; Gene Knockdown Techniques ; Genes, Essential/*genetics ; Genes, Tumor Suppressor ; Glioblastoma/*drug therapy/*genetics/pathology ; Homozygote ; Humans ; Hydroxamic Acids/pharmacology/therapeutic use ; Mice ; Molecular Targeted Therapy/*methods ; Neoplasm Transplantation ; Phosphonoacetic Acid/analogs & derivatives/pharmacology/therapeutic use ; Phosphopyruvate Hydratase/antagonists & inhibitors/deficiency/genetics/metabolism ; RNA, Small Interfering/genetics ; Sequence Deletion/*genetics ; Tumor Suppressor Proteins/deficiency/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-07-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muller, Florian -- Colla, Simona -- Aquilanti, Elisa -- Manzo, Veronica E -- Genovese, Giannicola -- Lee, Jaclyn -- Eisenson, Daniel -- Narurkar, Rujuta -- Deng, Pingna -- Nezi, Luigi -- Lee, Michelle -- Hu, Baoli -- Hu, Jian -- Sahin, Ergun -- Ong, Derrick -- Fletcher-Sananikone, Eliot -- Ho, Dennis -- Kwong, Lawrence -- Brennan, Cameron -- Wang, Y Alan -- Chin, Lynda -- DePinho, Ronald A -- England -- Nature. 2015 Sep 10;525(7568):278. doi: 10.1038/nature14609. Epub 2015 Jul 8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26153864" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-02-04
    Description: Effective clinical management of prostate cancer (PCA) has been challenged by significant intratumoural heterogeneity on the genomic and pathological levels and limited understanding of the genetic elements governing disease progression. Here, we exploited the experimental merits of the mouse to test the hypothesis that pathways constraining progression might be activated in indolent Pten-null mouse prostate tumours and that inactivation of such progression barriers in mice would engender a metastasis-prone condition. Comparative transcriptomic and canonical pathway analyses, followed by biochemical confirmation, of normal prostate epithelium versus poorly progressive Pten-null prostate cancers revealed robust activation of the TGFbeta/BMP-SMAD4 signalling axis. The functional relevance of SMAD4 was further supported by emergence of invasive, metastatic and lethal prostate cancers with 100% penetrance upon genetic deletion of Smad4 in the Pten-null mouse prostate. Pathological and molecular analysis as well as transcriptomic knowledge-based pathway profiling of emerging tumours identified cell proliferation and invasion as two cardinal tumour biological features in the metastatic Smad4/Pten-null PCA model. Follow-on pathological and functional assessment confirmed cyclin D1 and SPP1 as key mediators of these biological processes, which together with PTEN and SMAD4, form a four-gene signature that is prognostic of prostate-specific antigen (PSA) biochemical recurrence and lethal metastasis in human PCA. This model-informed progression analysis, together with genetic, functional and translational studies, establishes SMAD4 as a key regulator of PCA progression in mice and humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753179/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753179/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ding, Zhihu -- Wu, Chang-Jiun -- Chu, Gerald C -- Xiao, Yonghong -- Ho, Dennis -- Zhang, Jingfang -- Perry, Samuel R -- Labrot, Emma S -- Wu, Xiaoqiu -- Lis, Rosina -- Hoshida, Yujin -- Hiller, David -- Hu, Baoli -- Jiang, Shan -- Zheng, Hongwu -- Stegh, Alexander H -- Scott, Kenneth L -- Signoretti, Sabina -- Bardeesy, Nabeel -- Wang, Y Alan -- Hill, David E -- Golub, Todd R -- Stampfer, Meir J -- Wong, Wing H -- Loda, Massimo -- Mucci, Lorelei -- Chin, Lynda -- DePinho, Ronald A -- P50 CA090381/CA/NCI NIH HHS/ -- P50 CA090381-08/CA/NCI NIH HHS/ -- P50 CA90381/CA/NCI NIH HHS/ -- R01 5R01CA136578/CA/NCI NIH HHS/ -- R01 CA131945/CA/NCI NIH HHS/ -- R01CA131945/CA/NCI NIH HHS/ -- R01CA141298/CA/NCI NIH HHS/ -- U01-CA84313/CA/NCI NIH HHS/ -- England -- Nature. 2011 Feb 10;470(7333):269-73. doi: 10.1038/nature09677. Epub 2011 Feb 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21289624" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Morphogenetic Proteins/metabolism ; Cell Proliferation ; Cyclin D1/genetics/metabolism ; *Disease Progression ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Genes, Tumor Suppressor/physiology ; Humans ; Lung Neoplasms/secondary ; Lymphatic Metastasis ; Male ; Mice ; Mice, Transgenic ; Models, Biological ; Neoplasm Invasiveness/genetics/pathology ; Neoplasm Metastasis/genetics/*pathology ; Osteopontin/genetics/metabolism ; PTEN Phosphohydrolase/deficiency/genetics ; Penetrance ; Prognosis ; Prostate/metabolism ; Prostate-Specific Antigen/metabolism ; Prostatic Neoplasms/diagnosis/genetics/*pathology ; Smad4 Protein/deficiency/genetics/*metabolism ; Transforming Growth Factor beta
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-10-19
    Description: Chronic mucosal inflammation and tissue damage predisposes patients to the development of colorectal cancer. This association could be explained by the hypothesis that the same factors and pathways important for wound healing also promote tumorigenesis. A sensor of tissue damage should induce these factors to promote tissue repair and regulate their action to prevent development of cancer. Interleukin 22 (IL-22), a cytokine of the IL-10 superfamily, has an important role in colonic epithelial cell repair, and its levels are increased in the blood and intestine of inflammatory bowel disease patients. This cytokine can be neutralized by the soluble IL-22 receptor, known as the IL-22 binding protein (IL-22BP, also known as IL22RA2); however, the significance of endogenous IL-22BP in vivo and the pathways that regulate this receptor are unknown. Here we describe that IL-22BP has a crucial role in controlling tumorigenesis and epithelial cell proliferation in the colon. IL-22BP is highly expressed by dendritic cells in the colon in steady-state conditions. Sensing of intestinal tissue damage via the NLRP3 or NLRP6 inflammasomes led to an IL-18-dependent downregulation of IL-22BP, thereby increasing the ratio of IL-22/IL-22BP. IL-22, which is induced during intestinal tissue damage, exerted protective properties during the peak of damage, but promoted tumour development if uncontrolled during the recovery phase. Thus, the IL-22-IL-22BP axis critically regulates intestinal tissue repair and tumorigenesis in the colon.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3493690/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3493690/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huber, Samuel -- Gagliani, Nicola -- Zenewicz, Lauren A -- Huber, Francis J -- Bosurgi, Lidia -- Hu, Bo -- Hedl, Matija -- Zhang, Wei -- O'Connor, William Jr -- Murphy, Andrew J -- Valenzuela, David M -- Yancopoulos, George D -- Booth, Carmen J -- Cho, Judy H -- Ouyang, Wenjun -- Abraham, Clara -- Flavell, Richard A -- DK-P30-34989/DK/NIDDK NIH HHS/ -- P30 DK034989/DK/NIDDK NIH HHS/ -- R01 DK077905/DK/NIDDK NIH HHS/ -- R01DK077905/DK/NIDDK NIH HHS/ -- U19 AI082713/AI/NIAID NIH HHS/ -- U19-AI082713/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Nov 8;491(7423):259-63. doi: 10.1038/nature11535. Epub 2012 Oct 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23075849" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Transformation, Neoplastic ; Colitis/complications/metabolism/pathology ; Colon/metabolism/pathology ; Colonic Neoplasms/complications/metabolism/pathology ; Disease Models, Animal ; Down-Regulation ; Epithelial Cells/metabolism/pathology ; Genes, APC ; Inflammasomes/*metabolism ; Interleukin-18/metabolism ; Interleukins/deficiency/genetics/metabolism ; Intestines/*metabolism/*pathology ; Mice ; Mice, Knockout ; Receptors, Interleukin/deficiency/genetics/*metabolism ; Time Factors ; Weight Loss
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-11-01
    Description: The 2002-3 pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV) was one of the most significant public health events in recent history. An ongoing outbreak of Middle East respiratory syndrome coronavirus suggests that this group of viruses remains a key threat and that their distribution is wider than previously recognized. Although bats have been suggested to be the natural reservoirs of both viruses, attempts to isolate the progenitor virus of SARS-CoV from bats have been unsuccessful. Diverse SARS-like coronaviruses (SL-CoVs) have now been reported from bats in China, Europe and Africa, but none is considered a direct progenitor of SARS-CoV because of their phylogenetic disparity from this virus and the inability of their spike proteins to use the SARS-CoV cellular receptor molecule, the human angiotensin converting enzyme II (ACE2). Here we report whole-genome sequences of two novel bat coronaviruses from Chinese horseshoe bats (family: Rhinolophidae) in Yunnan, China: RsSHC014 and Rs3367. These viruses are far more closely related to SARS-CoV than any previously identified bat coronaviruses, particularly in the receptor binding domain of the spike protein. Most importantly, we report the first recorded isolation of a live SL-CoV (bat SL-CoV-WIV1) from bat faecal samples in Vero E6 cells, which has typical coronavirus morphology, 99.9% sequence identity to Rs3367 and uses ACE2 from humans, civets and Chinese horseshoe bats for cell entry. Preliminary in vitro testing indicates that WIV1 also has a broad species tropism. Our results provide the strongest evidence to date that Chinese horseshoe bats are natural reservoirs of SARS-CoV, and that intermediate hosts may not be necessary for direct human infection by some bat SL-CoVs. They also highlight the importance of pathogen-discovery programs targeting high-risk wildlife groups in emerging disease hotspots as a strategy for pandemic preparedness.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ge, Xing-Yi -- Li, Jia-Lu -- Yang, Xing-Lou -- Chmura, Aleksei A -- Zhu, Guangjian -- Epstein, Jonathan H -- Mazet, Jonna K -- Hu, Ben -- Zhang, Wei -- Peng, Cheng -- Zhang, Yu-Ji -- Luo, Chu-Ming -- Tan, Bing -- Wang, Ning -- Zhu, Yan -- Crameri, Gary -- Zhang, Shu-Yi -- Wang, Lin-Fa -- Daszak, Peter -- Shi, Zheng-Li -- R01AI079231/AI/NIAID NIH HHS/ -- R01TW005869/TW/FIC NIH HHS/ -- R56TW009502/TW/FIC NIH HHS/ -- England -- Nature. 2013 Nov 28;503(7477):535-8. doi: 10.1038/nature12711. Epub 2013 Oct 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Emerging Infectious Diseases, State Key Laboratory of Virology, Wuhan Institute of Virology of the Chinese Academy of Sciences, Wuhan 430071, China [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24172901" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cercopithecus aethiops ; China ; Chiroptera/*virology ; Disease Reservoirs/virology ; Feces/virology ; Fluorescent Antibody Technique ; Genome, Viral/genetics ; Host Specificity ; Humans ; Molecular Sequence Data ; Pandemics/prevention & control/veterinary ; Peptidyl-Dipeptidase A/genetics/*metabolism ; Real-Time Polymerase Chain Reaction ; Receptors, Virus/genetics/metabolism ; SARS Virus/genetics/*isolation & purification/*metabolism/ultrastructure ; Severe Acute Respiratory Syndrome/prevention & ; control/transmission/veterinary/virology ; Species Specificity ; Spike Glycoprotein, Coronavirus/chemistry/metabolism ; Vero Cells ; Virion/isolation & purification/ultrastructure ; Virus Internalization ; Viverridae/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-09-28
    Description: Anaplastic large cell lymphomas (ALCLs) are CD30-positive T-cell non-Hodgkin lymphomas broadly segregated into ALK-positive and ALK-negative types. Although ALK-positive ALCLs consistently bear rearrangements of the ALK tyrosine kinase gene, ALK-negative ALCLs are clinically and genetically heterogeneous. About 30% of ALK-negative ALCLs have rearrangements of DUSP22 and have excellent long-term outcomes with standard therapy. To better understand this group of tumors, we evaluated their molecular signature using gene expression profiling. DUSP22- rearranged ALCLs belonged to a distinct subset of ALCLs that lacked expression of genes associated with JAK-STAT3 signaling, a pathway contributing to growth in the majority of ALCLs. Reverse-phase protein array and immunohistochemical studies confirmed the lack of activated STAT3 in DUSP22- rearranged ALCLs. DUSP22- rearranged ALCLs also overexpressed immunogenic cancer-testis antigen (CTA) genes and showed marked DNA hypomethylation by reduced representation bisulfate sequencing and DNA methylation arrays. Pharmacologic DNA demethylation in ALCL cells recapitulated the overexpression of CTAs and other DUSP22 signature genes. In addition, DUSP22- rearranged ALCLs minimally expressed PD-L1 compared with other ALCLs, but showed high expression of the costimulatory gene CD58 and HLA class II. Taken together, these findings indicate that DUSP22 rearrangements define a molecularly distinct subgroup of ALCLs, and that immunogenic cues related to antigenicity, costimulatory molecule expression, and inactivity of the PD-1/PD-L1 immune checkpoint likely contribute to their favorable prognosis. More aggressive ALCLs might be pharmacologically reprogrammed to a DUSP22-like immunogenic molecular signature through the use of demethylating agents and/or immune checkpoint inhibitors.
    Keywords: Immunobiology and Immunotherapy, Lymphoid Neoplasia
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-10-20
    Description: Atomic-level structure engineering can substantially change the chemical and physical properties of materials. However, the effects of structure engineering on the capacitive properties of electrode materials at the atomic scale are poorly understood. Fast transport of ions and electrons to all active sites of electrode materials remains a grand challenge. Here, we report the radical modification of the pseudocapacitive properties of an oxide material, Zn x Co 1– x O, via atomic-level structure engineering, which changes its dominant charge storage mechanism from surface redox reactions to ion intercalation into bulk material. Fast ion and electron transports are simultaneously achieved in this mixed oxide, increasing its capacity almost to the theoretical limit. The resultant Zn x Co 1– x O exhibits high-rate performance with capacitance up to 450 F g –1 at a scan rate of 1 V s –1 , competing with the state-of-the-art transition metal carbides. A symmetric device assembled with Zn x Co 1– x O achieves an energy density of 67.3 watt-hour kg –1 at a power density of 1.67 kW kg –1 , which is the highest value ever reported for symmetric pseudocapacitors. Our finding suggests that the rational design of electrode materials at the atomic scale opens a new opportunity for achieving high power/energy density electrode materials for advanced energy storage devices.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-11-08
    Description: Type 2 diabetes and risk of colorectal cancer in two large U.S. prospective cohorts Type 2 diabetes and risk of colorectal cancer in two large U.S. prospective cohorts, Published online: 07 November 2018; doi:10.1038/s41416-018-0314-4 Type 2 diabetes and risk of colorectal cancer in two large U.S. prospective cohorts
    Print ISSN: 0007-0920
    Electronic ISSN: 1532-1827
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...