Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-12-11
    Description: H2O, CO2, SO2, O2, H2, H2S, HCl, chlorinated hydrocarbons, NO, and other trace gases were evolved during pyrolysis of two mudstone samples acquired by the Curiosity rover at Yellowknife Bay within Gale crater, Mars. H2O/OH-bearing phases included 2:1 phyllosilicate(s), bassanite, akaganeite, and amorphous materials. Thermal decomposition of carbonates and combustion of organic materials are candidate sources for the CO2. Concurrent evolution of O2 and chlorinated hydrocarbons suggests the presence of oxychlorine phase(s). Sulfides are likely sources for sulfur-bearing species. Higher abundances of chlorinated hydrocarbons in the mudstone compared with Rocknest windblown materials previously analyzed by Curiosity suggest that indigenous martian or meteoritic organic carbon sources may be preserved in the mudstone; however, the carbon source for the chlorinated hydrocarbons is not definitively of martian origin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ming, D W -- Archer, P D Jr -- Glavin, D P -- Eigenbrode, J L -- Franz, H B -- Sutter, B -- Brunner, A E -- Stern, J C -- Freissinet, C -- McAdam, A C -- Mahaffy, P R -- Cabane, M -- Coll, P -- Campbell, J L -- Atreya, S K -- Niles, P B -- Bell, J F 3rd -- Bish, D L -- Brinckerhoff, W B -- Buch, A -- Conrad, P G -- Des Marais, D J -- Ehlmann, B L -- Fairen, A G -- Farley, K -- Flesch, G J -- Francois, P -- Gellert, R -- Grant, J A -- Grotzinger, J P -- Gupta, S -- Herkenhoff, K E -- Hurowitz, J A -- Leshin, L A -- Lewis, K W -- McLennan, S M -- Miller, K E -- Moersch, J -- Morris, R V -- Navarro-Gonzalez, R -- Pavlov, A A -- Perrett, G M -- Pradler, I -- Squyres, S W -- Summons, R E -- Steele, A -- Stolper, E M -- Sumner, D Y -- Szopa, C -- Teinturier, S -- Trainer, M G -- Treiman, A H -- Vaniman, D T -- Vasavada, A R -- Webster, C R -- Wray, J J -- Yingst, R A -- MSL Science Team -- New York, N.Y. -- Science. 2014 Jan 24;343(6169):1245267. doi: 10.1126/science.1245267. Epub 2013 Dec 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Astromaterials Research and Exploration Science Directorate, NASA Johnson Space Center, Houston, TX 77058, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24324276" target="_blank"〉PubMed〈/a〉
    Keywords: Bays ; Carbon Dioxide/analysis/chemistry ; *Exobiology ; Extraterrestrial Environment/*chemistry ; Geologic Sediments/analysis/chemistry ; Hydrocarbons, Chlorinated/*analysis ; *Mars ; Oxygen/analysis/chemistry ; Sulfides/analysis/chemistry ; Volatile Organic Compounds/*analysis ; Water/analysis/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-12-11
    Description: Sedimentary rocks at Yellowknife Bay (Gale crater) on Mars include mudstone sampled by the Curiosity rover. The samples, John Klein and Cumberland, contain detrital basaltic minerals, calcium sulfates, iron oxide or hydroxides, iron sulfides, amorphous material, and trioctahedral smectites. The John Klein smectite has basal spacing of ~10 angstroms, indicating little interlayer hydration. The Cumberland smectite has basal spacing at both ~13.2 and ~10 angstroms. The larger spacing suggests a partially chloritized interlayer or interlayer magnesium or calcium facilitating H2O retention. Basaltic minerals in the mudstone are similar to those in nearby eolian deposits. However, the mudstone has far less Fe-forsterite, possibly lost with formation of smectite plus magnetite. Late Noachian/Early Hesperian or younger age indicates that clay mineral formation on Mars extended beyond Noachian time.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vaniman, D T -- Bish, D L -- Ming, D W -- Bristow, T F -- Morris, R V -- Blake, D F -- Chipera, S J -- Morrison, S M -- Treiman, A H -- Rampe, E B -- Rice, M -- Achilles, C N -- Grotzinger, J P -- McLennan, S M -- Williams, J -- Bell, J F 3rd -- Newsom, H E -- Downs, R T -- Maurice, S -- Sarrazin, P -- Yen, A S -- Morookian, J M -- Farmer, J D -- Stack, K -- Milliken, R E -- Ehlmann, B L -- Sumner, D Y -- Berger, G -- Crisp, J A -- Hurowitz, J A -- Anderson, R -- Des Marais, D J -- Stolper, E M -- Edgett, K S -- Gupta, S -- Spanovich, N -- MSL Science Team -- New York, N.Y. -- Science. 2014 Jan 24;343(6169):1243480. doi: 10.1126/science.1243480. Epub 2013 Dec 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Planetary Science Institute, Tucson, AZ 85719, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24324271" target="_blank"〉PubMed〈/a〉
    Keywords: Extraterrestrial Environment/*chemistry ; Ferrosoferric Oxide/analysis/chemistry ; Geologic Sediments/analysis/*chemistry ; *Mars ; Minerals/analysis/*chemistry ; Silicates/analysis/chemistry ; Silicon Compounds/analysis/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-12-11
    Description: Sedimentary rocks examined by the Curiosity rover at Yellowknife Bay, Mars, were derived from sources that evolved from an approximately average martian crustal composition to one influenced by alkaline basalts. No evidence of chemical weathering is preserved, indicating arid, possibly cold, paleoclimates and rapid erosion and deposition. The absence of predicted geochemical variations indicates that magnetite and phyllosilicates formed by diagenesis under low-temperature, circumneutral pH, rock-dominated aqueous conditions. Analyses of diagenetic features (including concretions, raised ridges, and fractures) at high spatial resolution indicate that they are composed of iron- and halogen-rich components, magnesium-iron-chlorine-rich components, and hydrated calcium sulfates, respectively. Composition of a cross-cutting dike-like feature is consistent with sedimentary intrusion. The geochemistry of these sedimentary rocks provides further evidence for diverse depositional and diagenetic sedimentary environments during the early history of Mars.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McLennan, S M -- Anderson, R B -- Bell, J F 3rd -- Bridges, J C -- Calef, F 3rd -- Campbell, J L -- Clark, B C -- Clegg, S -- Conrad, P -- Cousin, A -- Des Marais, D J -- Dromart, G -- Dyar, M D -- Edgar, L A -- Ehlmann, B L -- Fabre, C -- Forni, O -- Gasnault, O -- Gellert, R -- Gordon, S -- Grant, J A -- Grotzinger, J P -- Gupta, S -- Herkenhoff, K E -- Hurowitz, J A -- King, P L -- Le Mouelic, S -- Leshin, L A -- Leveille, R -- Lewis, K W -- Mangold, N -- Maurice, S -- Ming, D W -- Morris, R V -- Nachon, M -- Newsom, H E -- Ollila, A M -- Perrett, G M -- Rice, M S -- Schmidt, M E -- Schwenzer, S P -- Stack, K -- Stolper, E M -- Sumner, D Y -- Treiman, A H -- VanBommel, S -- Vaniman, D T -- Vasavada, A -- Wiens, R C -- Yingst, R A -- MSL Science Team -- New York, N.Y. -- Science. 2014 Jan 24;343(6169):1244734. doi: 10.1126/science.1244734. Epub 2013 Dec 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geosciences, State University of New York, Stony Brook, NY 11794, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24324274" target="_blank"〉PubMed〈/a〉
    Keywords: Bays ; Calcium Sulfate/analysis/chemistry ; Chlorine/analysis/chemistry ; *Exobiology ; Extraterrestrial Environment/*chemistry ; Ferrosoferric Oxide/analysis/chemistry ; Geologic Sediments/*chemistry ; Halogens/analysis/chemistry ; Hydrogen-Ion Concentration ; Iron/analysis/chemistry ; Magnesium/analysis/chemistry ; *Mars ; Silicates/analysis/chemistry ; Water/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-11-05
    Description: Clay minerals, recently discovered to be widespread in Mars's Noachian terrains, indicate long-duration interaction between water and rock over 3.7 billion years ago. Analysis of how they formed should indicate what environmental conditions prevailed on early Mars. If clays formed near the surface by weathering, as is common on Earth, their presence would indicate past surface conditions warmer and wetter than at present. However, available data instead indicate substantial Martian clay formation by hydrothermal groundwater circulation and a Noachian rock record dominated by evidence of subsurface waters. Cold, arid conditions with only transient surface water may have characterized Mars's surface for over 4 billion years, since the early-Noachian period, and the longest-duration aqueous, potentially habitable environments may have been in the subsurface.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ehlmann, Bethany L -- Mustard, John F -- Murchie, Scott L -- Bibring, Jean-Pierre -- Meunier, Alain -- Fraeman, Abigail A -- Langevin, Yves -- England -- Nature. 2011 Nov 2;479(7371):53-60. doi: 10.1038/nature10582.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut d'Astrophysique Spatiale, Universite de Paris-Sud XI, 91405 Orsay Cedex, France. ehlmann@caltech.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22051674" target="_blank"〉PubMed〈/a〉
    Keywords: Aluminum Silicates/*analysis/*chemistry/classification ; Exobiology ; Extraterrestrial Environment/*chemistry ; Groundwater/*analysis ; Ice/analysis ; *Mars ; Silicates/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Comprehensive analyses of remote sensing data during the three-year effort to select the Mars Exploration Rover landing sites at Gusev crater and at Meridiani Planum correctly predicted the atmospheric density profile during entry and descent and the safe and trafficable surfaces explored by the ...
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-03-15
    Description: Different carbonates have been detected on Ceres, and their abundance and spatial distribution have been mapped using a visible and infrared mapping spectrometer (VIR), the Dawn imaging spectrometer. Carbonates are abundant and ubiquitous across the surface, but variations in the strength and position of infrared spectral absorptions indicate variations in the composition and amount of these minerals. Mg-Ca carbonates are detected all over the surface, but localized areas show Na carbonates, such as natrite (Na 2 CO 3 ) and hydrated Na carbonates (for example, Na 2 CO 3 ·H 2 O). Their geological settings and accessory NH 4 -bearing phases suggest the upwelling, excavation, and exposure of salts formed from Na-CO 3 -NH 4 -Cl brine solutions at multiple locations across the planet. The presence of the hydrated carbonates indicates that their formation/exposure on Ceres’ surface is geologically recent and dehydration to the anhydrous form (Na 2 CO 3 ) is ongoing, implying a still-evolving body.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...