Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Publication Date: 2018-06-20
    Description: Objectives To understand whether parents’ weight status before conception predicts body mass index (BMI) of their offspring in early life and the differences between the mother–child and father–child associations. Design A birth cohort study. Setting Conducted at the Community Health Service Centre in Shenyang, Wuhan and Guangzhou. Participants A total of 2220 live birth newborns were recruited randomly after consent of their parents, and 1178 were followed up until 2 years old. Methods Parental demographics, maternal characteristics during pregnancy, children’s anthropometric data and feeding patterns at 1 month old were collected. BMI was calculated and BMI Z-scores (BMI_Z) were generated by referring to WHO growth standard. Parental weight status was categorised into underweight, normal weight, and overweight and obese according to the Working Group of Obesity in China. General linear models and generalised linear models were used to assess the associations between parents and offspring. Outcome measures The primary outcomes were descriptive data on child’s sex-specific anthropometric variables. The secondary outcomes were BMI_Z and weight status of children at each time point. Results No gender difference was observed in BMI_Z or overweight or obesity rates from birth to 24 months old, although boys were significantly heavier and had a greater length/height than girls (P〈0.05). The overweight and obesity rates of children peaked at 12 months old. Maternal BMI/weight status had a significant but small effect on BMI_Z at birth, but not on the paternal side. The impact of parental BMI on child’s BMI_Z after birth was similar at each follow-up. Offspring with underweight mothers tend to have reduced BMI_Z after birth while overweight/obese fathers had children with a greater BMI_Z. Conclusions Maternal weight status had small effect on both fetal and child growth after birth. Significant but mild paternal influence was only detected after birth.
    Keywords: Open access, Paediatrics
    Electronic ISSN: 2044-6055
    Topics: Medicine
    Published by BMJ Publishing
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-15
    Description: Hepatitis B virus (HBV) infection is endemic in some parts of Asia, Africa, and South America and remains to be a significant public health problem in these areas. It is known as a leading risk factor for the development of hepatocellular carcinoma, but epidemiological studies have also shown that the infection may increase the incidence of several types of B-cell lymphoma. Here, by characterizing altogether 275 Chinese diffuse large B-cell lymphoma (DLBCL) patients, we showed that patients with concomitant HBV infection (surface antigen positive [HBsAg + ]) are characterized by a younger age, a more advanced disease stage at diagnosis, and reduced overall survival. Furthermore, by whole-genome/exome sequencing of 96 tumors and the respective peripheral blood samples and targeted sequencing of 179 tumors from these patients, we observed an enhanced rate of mutagenesis and a distinct set of mutation targets in HBsAg + DLBCL genomes, which could be partially explained by the activities of APOBEC and activation-induced cytidine deaminase. By transcriptome analysis, we further showed that the HBV-associated gene expression signature is contributed by the enrichment of genes regulated by BCL6, FOXO1, and ZFP36L1. Finally, by analysis of immunoglobulin heavy chain gene sequences, we showed that an antigen-independent mechanism, rather than a chronic antigenic simulation model, is favored in HBV-related lymphomagenesis. Taken together, we present the first comprehensive genomic and transcriptomic study that suggests a link between HBV infection and B-cell malignancy. The genetic alterations identified in this study may also provide opportunities for development of novel therapeutic strategies.
    Keywords: Lymphoid Neoplasia
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-03-29
    Description: Bread wheat (Triticum aestivum, AABBDD) is one of the most widely cultivated and consumed food crops in the world. However, the complex polyploid nature of its genome makes genetic and functional analyses extremely challenging. The A genome, as a basic genome of bread wheat and other polyploid wheats, for example, T. turgidum (AABB), T. timopheevii (AAGG) and T. zhukovskyi (AAGGA(m)A(m)), is central to wheat evolution, domestication and genetic improvement. The progenitor species of the A genome is the diploid wild einkorn wheat T. urartu, which resembles cultivated wheat more extensively than do Aegilops speltoides (the ancestor of the B genome) and Ae. tauschii (the donor of the D genome), especially in the morphology and development of spike and seed. Here we present the generation, assembly and analysis of a whole-genome shotgun draft sequence of the T. urartu genome. We identified protein-coding gene models, performed genome structure analyses and assessed its utility for analysing agronomically important genes and for developing molecular markers. Our T. urartu genome assembly provides a diploid reference for analysis of polyploid wheat genomes and is a valuable resource for the genetic improvement of wheat.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ling, Hong-Qing -- Zhao, Shancen -- Liu, Dongcheng -- Wang, Junyi -- Sun, Hua -- Zhang, Chi -- Fan, Huajie -- Li, Dong -- Dong, Lingli -- Tao, Yong -- Gao, Chuan -- Wu, Huilan -- Li, Yiwen -- Cui, Yan -- Guo, Xiaosen -- Zheng, Shusong -- Wang, Biao -- Yu, Kang -- Liang, Qinsi -- Yang, Wenlong -- Lou, Xueyuan -- Chen, Jie -- Feng, Mingji -- Jian, Jianbo -- Zhang, Xiaofei -- Luo, Guangbin -- Jiang, Ying -- Liu, Junjie -- Wang, Zhaobao -- Sha, Yuhui -- Zhang, Bairu -- Wu, Huajun -- Tang, Dingzhong -- Shen, Qianhua -- Xue, Pengya -- Zou, Shenhao -- Wang, Xiujie -- Liu, Xin -- Wang, Famin -- Yang, Yanping -- An, Xueli -- Dong, Zhenying -- Zhang, Kunpu -- Zhang, Xiangqi -- Luo, Ming-Cheng -- Dvorak, Jan -- Tong, Yiping -- Wang, Jian -- Yang, Huanming -- Li, Zhensheng -- Wang, Daowen -- Zhang, Aimin -- Wang, Jun -- England -- Nature. 2013 Apr 4;496(7443):87-90. doi: 10.1038/nature11997. Epub 2013 Mar 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23535596" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Brachypodium/genetics ; Crops, Agricultural/classification/genetics ; Diploidy ; Genetic Markers/genetics ; Genome, Plant/*genetics ; Molecular Sequence Data ; Oryza/genetics ; Phylogeny ; Sorghum/genetics ; Synteny/genetics ; Triticum/classification/*genetics ; Zea mays/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-07-09
    Description: The newly emergent Middle East respiratory syndrome coronavirus (MERS-CoV) can cause severe pulmonary disease in humans, representing the second example of a highly pathogenic coronavirus, the first being SARS-CoV. CD26 (also known as dipeptidyl peptidase 4, DPP4) was recently identified as the cellular receptor for MERS-CoV. The engagement of the MERS-CoV spike protein with CD26 mediates viral attachment to host cells and virus-cell fusion, thereby initiating infection. Here we delineate the molecular basis of this specific interaction by presenting the first crystal structures of both the free receptor binding domain (RBD) of the MERS-CoV spike protein and its complex with CD26. Furthermore, binding between the RBD and CD26 is measured using real-time surface plasmon resonance with a dissociation constant of 16.7 nM. The viral RBD is composed of a core subdomain homologous to that of the SARS-CoV spike protein, and a unique strand-dominated external receptor binding motif that recognizes blades IV and V of the CD26 beta-propeller. The atomic details at the interface between the two binding entities reveal a surprising protein-protein contact mediated mainly by hydrophilic residues. Sequence alignment indicates, among betacoronaviruses, a possible structural conservation for the region homologous to the MERS-CoV RBD core, but a high variation in the external receptor binding motif region for virus-specific pathogenesis such as receptor recognition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Guangwen -- Hu, Yawei -- Wang, Qihui -- Qi, Jianxun -- Gao, Feng -- Li, Yan -- Zhang, Yanfang -- Zhang, Wei -- Yuan, Yuan -- Bao, Jinku -- Zhang, Buchang -- Shi, Yi -- Yan, Jinghua -- Gao, George F -- England -- Nature. 2013 Aug 8;500(7461):227-31. doi: 10.1038/nature12328. Epub 2013 Jul 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23831647" target="_blank"〉PubMed〈/a〉
    Keywords: Conserved Sequence/genetics ; Coronavirus/*chemistry/genetics/*metabolism ; Dipeptidyl Peptidase 4/*chemistry/metabolism ; Humans ; Protein Binding ; Protein Interaction Domains and Motifs/genetics ; Protein Structure, Tertiary/genetics ; Receptors, Virus/*chemistry/*metabolism ; *Virus Attachment
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-01-10
    Description: The human immunodeficiency virus (HIV)-1 protein Vif has a central role in the neutralization of host innate defences by hijacking cellular proteasomal degradation pathways to subvert the antiviral activity of host restriction factors; however, the underlying mechanism by which Vif achieves this remains unclear. Here we report a crystal structure of the Vif-CBF-beta-CUL5-ELOB-ELOC complex. The structure reveals that Vif, by means of two domains, organizes formation of the pentameric complex by interacting with CBF-beta, CUL5 and ELOC. The larger domain (alpha/beta domain) of Vif binds to the same side of CBF-beta as RUNX1, indicating that Vif and RUNX1 are exclusive for CBF-beta binding. Interactions of the smaller domain (alpha-domain) of Vif with ELOC and CUL5 are cooperative and mimic those of SOCS2 with the latter two proteins. A unique zinc-finger motif of Vif, which is located between the two Vif domains, makes no contacts with the other proteins but stabilizes the conformation of the alpha-domain, which may be important for Vif-CUL5 interaction. Together, our data reveal the structural basis for Vif hijacking of the CBF-beta and CUL5 E3 ligase complex, laying a foundation for rational design of novel anti-HIV drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, Yingying -- Dong, Liyong -- Qiu, Xiaolin -- Wang, Yishu -- Zhang, Bailing -- Liu, Hongnan -- Yu, You -- Zang, Yi -- Yang, Maojun -- Huang, Zhiwei -- England -- Nature. 2014 Jan 9;505(7482):229-33. doi: 10.1038/nature12884.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China [2]. ; School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China. ; MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24402281" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Core Binding Factor Alpha 2 Subunit/metabolism ; Core Binding Factor beta Subunit/*chemistry/*metabolism ; Crystallography, X-Ray ; Cullin Proteins/*chemistry/*metabolism ; Humans ; Models, Molecular ; Molecular Sequence Data ; Multiprotein Complexes/chemistry/metabolism ; Protein Binding ; Protein Stability ; Protein Structure, Tertiary ; Suppressor of Cytokine Signaling Proteins ; Transcription Factors/chemistry/metabolism ; vif Gene Products, Human Immunodeficiency Virus/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-07-22
    Description: Extensive genomic characterization of human cancers presents the problem of inference from genomic abnormalities to cancer phenotypes. To address this problem, we analysed proteomes of colon and rectal tumours characterized previously by The Cancer Genome Atlas (TCGA) and perform integrated proteogenomic analyses. Somatic variants displayed reduced protein abundance compared to germline variants. Messenger RNA transcript abundance did not reliably predict protein abundance differences between tumours. Proteomics identified five proteomic subtypes in the TCGA cohort, two of which overlapped with the TCGA 'microsatellite instability/CpG island methylation phenotype' transcriptomic subtype, but had distinct mutation, methylation and protein expression patterns associated with different clinical outcomes. Although copy number alterations showed strong cis- and trans-effects on mRNA abundance, relatively few of these extend to the protein level. Thus, proteomics data enabled prioritization of candidate driver genes. The chromosome 20q amplicon was associated with the largest global changes at both mRNA and protein levels; proteomics data highlighted potential 20q candidates, including HNF4A (hepatocyte nuclear factor 4, alpha), TOMM34 (translocase of outer mitochondrial membrane 34) and SRC (SRC proto-oncogene, non-receptor tyrosine kinase). Integrated proteogenomic analysis provides functional context to interpret genomic abnormalities and affords a new paradigm for understanding cancer biology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4249766/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4249766/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Bing -- Wang, Jing -- Wang, Xiaojing -- Zhu, Jing -- Liu, Qi -- Shi, Zhiao -- Chambers, Matthew C -- Zimmerman, Lisa J -- Shaddox, Kent F -- Kim, Sangtae -- Davies, Sherri R -- Wang, Sean -- Wang, Pei -- Kinsinger, Christopher R -- Rivers, Robert C -- Rodriguez, Henry -- Townsend, R Reid -- Ellis, Matthew J C -- Carr, Steven A -- Tabb, David L -- Coffey, Robert J -- Slebos, Robbert J C -- Liebler, Daniel C -- NCI CPTAC -- GM088822/GM/NIGMS NIH HHS/ -- P30 CA068485/CA/NCI NIH HHS/ -- P30 DK058404/DK/NIDDK NIH HHS/ -- P30CA068485/CA/NCI NIH HHS/ -- P50 CA095103/CA/NCI NIH HHS/ -- P50CA095103/CA/NCI NIH HHS/ -- R01 GM088822/GM/NIGMS NIH HHS/ -- U24 CA159988/CA/NCI NIH HHS/ -- U24 CA160019/CA/NCI NIH HHS/ -- U24 CA160034/CA/NCI NIH HHS/ -- U24 CA160035/CA/NCI NIH HHS/ -- U24CA159988/CA/NCI NIH HHS/ -- U24CA160034/CA/NCI NIH HHS/ -- U24CA160035/CA/NCI NIH HHS/ -- U54 HG003079/HG/NHGRI NIH HHS/ -- UL1 TR000448/TR/NCATS NIH HHS/ -- England -- Nature. 2014 Sep 18;513(7518):382-7. doi: 10.1038/nature13438. Epub 2014 Jul 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA [2] Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA. ; Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA. ; 1] Advanced Computing Center for Research and Education, Vanderbilt University, Nashville, Tennessee 37232, USA [2] Department of Electrical Engineering and Computer Science, Vanderbilt University, Tennessee 37232, USA. ; 1] Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA [2] Jim Ayers Institute for Precancer Detection and Diagnosis, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee 37232, USA. ; Jim Ayers Institute for Precancer Detection and Diagnosis, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee 37232, USA. ; Directorate of Fundamental and Computational Sciences, Pacific Northwest National Laboratory, Richland, Washington 99352, USA. ; Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA. ; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, M2-B500, Seattle, Washington 98109, USA. ; Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York, New York 10029, USA. ; Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, Maryland 20892, USA. ; Broad Institute of MIT and Harvard, Cambridge, Maryland 02142, USA. ; Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA. ; 1] Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA [2] Jim Ayers Institute for Precancer Detection and Diagnosis, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee 37232, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043054" target="_blank"〉PubMed〈/a〉
    Keywords: Chromosomes, Human, Pair 20/genetics ; Colonic Neoplasms/*genetics/*metabolism ; CpG Islands/genetics ; DNA Copy Number Variations/genetics ; DNA Methylation ; *Genomics ; Hepatocyte Nuclear Factor 4/genetics ; Humans ; Microsatellite Repeats/genetics ; Mitochondrial Membrane Transport Proteins/genetics ; Mutation, Missense/genetics ; Neoplasm Proteins/analysis/genetics/metabolism ; Point Mutation/genetics ; Proteome/analysis/genetics/*metabolism ; Proteomics ; Proto-Oncogene Proteins pp60(c-src)/genetics ; RNA, Messenger/analysis/genetics/metabolism ; RNA, Neoplasm/analysis/genetics/metabolism ; Rectal Neoplasms/*genetics/*metabolism ; Transcriptome/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-10-09
    Description: The human immunodeficiency virus type 1 (HIV-1) envelope (Env) spike, comprising three gp120 and three gp41 subunits, is a conformational machine that facilitates HIV-1 entry by rearranging from a mature unliganded state, through receptor-bound intermediates, to a post-fusion state. As the sole viral antigen on the HIV-1 virion surface, Env is both the target of neutralizing antibodies and a focus of vaccine efforts. Here we report the structure at 3.5 A resolution for an HIV-1 Env trimer captured in a mature closed state by antibodies PGT122 and 35O22. This structure reveals the pre-fusion conformation of gp41, indicates rearrangements needed for fusion activation, and defines parameters of immune evasion and immune recognition. Pre-fusion gp41 encircles amino- and carboxy-terminal strands of gp120 with four helices that form a membrane-proximal collar, fastened by insertion of a fusion peptide-proximal methionine into a gp41-tryptophan clasp. Spike rearrangements required for entry involve opening the clasp and expelling the termini. N-linked glycosylation and sequence-variable regions cover the pre-fusion closed spike; we used chronic cohorts to map the prevalence and location of effective HIV-1-neutralizing responses, which were distinguished by their recognition of N-linked glycan and tolerance for epitope-sequence variation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4348022/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4348022/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pancera, Marie -- Zhou, Tongqing -- Druz, Aliaksandr -- Georgiev, Ivelin S -- Soto, Cinque -- Gorman, Jason -- Huang, Jinghe -- Acharya, Priyamvada -- Chuang, Gwo-Yu -- Ofek, Gilad -- Stewart-Jones, Guillaume B E -- Stuckey, Jonathan -- Bailer, Robert T -- Joyce, M Gordon -- Louder, Mark K -- Tumba, Nancy -- Yang, Yongping -- Zhang, Baoshan -- Cohen, Myron S -- Haynes, Barton F -- Mascola, John R -- Morris, Lynn -- Munro, James B -- Blanchard, Scott C -- Mothes, Walther -- Connors, Mark -- Kwong, Peter D -- AI0678501/AI/NIAID NIH HHS/ -- AI100645/AI/NIAID NIH HHS/ -- P01 GM056550/GM/NIGMS NIH HHS/ -- P01-GM56550/GM/NIGMS NIH HHS/ -- P30 AI050410/AI/NIAID NIH HHS/ -- R01 GM098859/GM/NIGMS NIH HHS/ -- R01-GM098859/GM/NIGMS NIH HHS/ -- R21 AI100696/AI/NIAID NIH HHS/ -- R21-AI100696/AI/NIAID NIH HHS/ -- UL1 TR000142/TR/NCATS NIH HHS/ -- UM1 AI100645/AI/NIAID NIH HHS/ -- ZIA AI005023-13/Intramural NIH HHS/ -- ZIA AI005024-13/Intramural NIH HHS/ -- England -- Nature. 2014 Oct 23;514(7523):455-61. doi: 10.1038/nature13808. Epub 2014 Oct 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Sandringham, Johannesburg 2131, South Africa. ; Departments of Medicine, Epidemiology, Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA. ; Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, and the Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham, North Carolina 27710, USA. ; 1] Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Sandringham, Johannesburg 2131, South Africa [2] University of the Witwatersrand, Braamfontein, Johannesburg 2000, South Africa [3] Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban 4041, South Africa. ; Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06536, USA. ; Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25296255" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/chemistry/immunology ; Amino Acid Sequence ; Antibodies, Neutralizing/immunology ; Cohort Studies ; Crystallography, X-Ray ; Genetic Variation ; Glycosylation ; HIV Antibodies/immunology ; HIV Envelope Protein gp120/*chemistry/genetics/*immunology ; HIV Envelope Protein gp41/*chemistry/genetics/*immunology ; HIV Infections/immunology ; Humans ; Immune Evasion ; Membrane Fusion ; Models, Molecular ; Molecular Sequence Data ; Polysaccharides/chemistry/immunology ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Subunits/chemistry/genetics/immunology ; Structural Homology, Protein ; Virus Internalization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-01-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Bo -- Cao, Cong -- England -- Nature. 2015 Jan 22;517(7535):433-4. doi: 10.1038/517433a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Information Center, Ministry of Environmental Protection, China. ; School of Contemporary Chinese Studies, University of Nottingham, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25612037" target="_blank"〉PubMed〈/a〉
    Keywords: China ; Environmental Policy/*legislation & jurisprudence ; Environmental Pollution/legislation & jurisprudence/prevention & control
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-11-20
    Description: Parkinson's disease is characterized by abundant alpha-synuclein (alpha-Syn) neuronal inclusions, known as Lewy bodies and Lewy neurites, and the massive loss of midbrain dopamine neurons. However, a cause-and-effect relationship between Lewy inclusion formation and neurodegeneration remains unclear. Here, we found that in wild-type nontransgenic mice, a single intrastriatal inoculation of synthetic alpha-Syn fibrils led to the cell-to-cell transmission of pathologic alpha-Syn and Parkinson's-like Lewy pathology in anatomically interconnected regions. Lewy pathology accumulation resulted in progressive loss of dopamine neurons in the substantia nigra pars compacta, but not in the adjacent ventral tegmental area, and was accompanied by reduced dopamine levels culminating in motor deficits. This recapitulation of a neurodegenerative cascade thus establishes a mechanistic link between transmission of pathologic alpha-Syn and the cardinal features of Parkinson's disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552321/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552321/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luk, Kelvin C -- Kehm, Victoria -- Carroll, Jenna -- Zhang, Bin -- O'Brien, Patrick -- Trojanowski, John Q -- Lee, Virginia M-Y -- NS053488/NS/NINDS NIH HHS/ -- P50 NS053488/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2012 Nov 16;338(6109):949-53. doi: 10.1126/science.1227157.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-4283, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23161999" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Corpus Striatum/drug effects/*metabolism/pathology ; Dopamine ; Dopaminergic Neurons/drug effects/metabolism/pathology ; Injections ; Lewy Bodies/drug effects/*metabolism/pathology ; Mice ; Parkinsonian Disorders/*metabolism/pathology ; Protein Folding ; Protein Transport ; Recombinant Proteins/administration & dosage/chemistry/metabolism ; Substantia Nigra/drug effects/metabolism/pathology ; alpha-Synuclein/administration & dosage/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-07-12
    Description: Observed distributions of high-speed plasma flows at distances of 10 to 30 Earth radii (R(E)) in Earth's magnetotail neutral sheet are highly skewed toward the premidnight sector. The flows are a product of the magnetic reconnection process that converts magnetic energy stored in the magnetotail into plasma kinetic and thermal energy. We show, using global numerical simulations, that the electrodynamic interaction between Earth's magnetosphere and ionosphere produces an asymmetry consistent with observed distributions in nightside reconnection and plasmasheet flows and in accompanying ionospheric convection. The primary causal agent is the meridional gradient in the ionospheric Hall conductance which, through the Cowling effect, regulates the distribution of electrical currents flowing within and between the ionosphere and magnetotail.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lotko, William -- Smith, Ryan H -- Zhang, Binzheng -- Ouellette, Jeremy E -- Brambles, Oliver J -- Lyon, John G -- New York, N.Y. -- Science. 2014 Jul 11;345(6193):184-7. doi: 10.1126/science.1252907.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Thayer School of Engineering, Dartmouth College, Hanover, NH, USA. Research Affiliate, High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO, USA. wlotko@dartmouth.edu. ; Thayer School of Engineering, Dartmouth College, Hanover, NH, USA. ; Thayer School of Engineering, Dartmouth College, Hanover, NH, USA. Department of Computer and Information Systems, Vermont Technical College, Randolph Center, VT, USA. ; Department of Physics and Astronomy, Dartmouth College, Hanover, NH, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25013068" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...