Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Abstract: Perturbations in levels of amino acids (AA) and their derivatives are observed in hepatocellular carcinoma (HCC). Yet, it is unclear whether these alterations precede or are a consequence of the disease, nor whether they pertain to anatomically related cancers of the intrahepatic bile duct (IHBC), and gallbladder and extrahepatic biliary tract (GBTC). Circulating standard AA, biogenic amines and hexoses were measured (Biocrates AbsoluteIDQ-p180Kit) in a case-control study nested within a large prospective cohort (147 HCC, 43 IHBC and 134 GBTC cases). Liver function and hepatitis status biomarkers were determined separately. Multivariable conditional logistic regression was used to calculate odds ratios and 95% confidence intervals (OR; 95%CI) for log-transformed standardised (mean = 0, SD = 1) serum metabolite levels and relevant ratios in relation to HCC, IHBC or GBTC risk. Fourteen metabolites were significantly associated with HCC risk, of which seven metabolites and four ratios were the strongest predictors in continuous models. Leucine, lysine, glutamine and the ratio of branched chain to aromatic AA (Fischer's ratio) were inversely, while phenylalanine, tyrosine and their ratio, glutamate, glutamate/glutamine ratio, kynurenine and its ratio to tryptophan were positively associated with HCC risk. Confounding by hepatitis status and liver enzyme levels was observed. For the other cancers no significant associations were observed. In conclusion, imbalances of specific AA and biogenic amines may be involved in HCC development.
    Type of Publication: Journal article published
    PubMed ID: 26238458
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: CANCER ; EXPOSURE ; IDENTIFICATION ; MEASUREMENT ERROR ; CALIBRATION ; CARDIOVASCULAR-DISEASE ; 24-HOUR DIET RECALL ; FALSE DISCOVERY RATE ; COFFEE CONSUMPTION ; NUTRITIONAL BIOMARKERS
    Abstract: BACKGROUND: An improved understanding of the contribution of the diet to health and disease risks requires accurate assessments of dietary exposure in nutritional epidemiologic studies. The use of dietary biomarkers may improve the accuracy of estimates. OBJECTIVE: We applied a metabolomic approach in a large cohort study to identify novel biomarkers of intake for a selection of polyphenol-containing foods. The large chemical diversity of polyphenols and their wide distribution over many foods make them ideal biomarker candidates for such foods. DESIGN: Metabolic profiles were measured with the use of high-resolution mass spectrometry in 24-h urine samples from 481 subjects from the large European Prospective Investigation on Cancer and Nutrition cohort. Peak intensities were correlated to acute and habitual dietary intakes of 6 polyphenol-rich foods (coffee, tea, red wine, citrus fruit, apples and pears, and chocolate products) measured with the use of 24-h dietary recalls and food-frequency questionnaires, respectively. RESULTS: Correlation (r 〉 0.3, P 〈 0.01 after correction for multiple testing) and discriminant [pcorr (1) 〉 0.3, VIP 〉 1.5] analyses showed that 〉2000 mass spectral features from urine metabolic profiles were significantly associated with the consumption of the 6 selected foods. More than 80 polyphenol metabolites associated with the consumption of the selected foods could be identified, and large differences in their concentrations reflecting individual food intakes were observed within and between 4 European countries. Receiver operating characteristic curves showed that 5 polyphenol metabolites, which are characteristic of 5 of the 6 selected foods, had a high predicting ability of food intake. CONCLUSION: Highly diverse food-derived metabolites (the so-called food metabolome) can be characterized in human biospecimens through this powerful metabolomic approach and screened to identify novel biomarkers for dietary exposures, which are ultimately essential to better understand the role of the diet in the cause of chronic diseases.
    Type of Publication: Journal article published
    PubMed ID: 26269369
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Abstract: Flavonoids have been shown to inhibit colon cancer cell proliferation in vitro and protect against colorectal carcinogenesis in animal models. However, epidemiological evidence on the potential role of flavonoid intake in colorectal cancer (CRC) development remains sparse and inconsistent. We evaluated the association between dietary intakes of total flavonoids and their subclasses and risk of development of CRC, within the European Prospective Investigation into Cancer and Nutrition (EPIC) study. A cohort of 477,312 adult men and women were recruited in 10 European countries. At baseline, dietary intakes of total flavonoids and individual subclasses were estimated using centre-specific validated dietary questionnaires and composition data from the Phenol-Explorer database. During an average of 11 years of follow-up, 4,517 new cases of primary CRC were identified, of which 2,869 were colon (proximal = 1,298 and distal = 1,266) and 1,648 rectal tumours. No association was found between total flavonoid intake and the risk of overall CRC (HR for comparison of extreme quintiles 1.05, 95% CI 0.93-1.18; p-trend = 0.58) or any CRC subtype. No association was also observed with any intake of individual flavonoid subclasses. Similar results were observed for flavonoid intake expressed as glycosides or aglycone equivalents. Intake of total flavonoids and flavonoid subclasses, as estimated from dietary questionnaires, did not show any association with risk of CRC development.
    Type of Publication: Journal article published
    PubMed ID: 28006847
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: SURVIVAL ; PROTEIN ; TUMORS ; URINE ; XANTHINE DEHYDROGENASE ; SUBTYPES ; OVARIAN ; CELL METABOLISM
    Abstract: Molecular subtyping of breast cancer is necessary for therapy selection and mandatory for all breast cancer patients. Metabolic alterations are considered a hallmark of cancer and several metabolic drugs are currently being investigated in clinical trials. However, the dependence of metabolic alterations on breast cancer subtypes has not been investigated on -omics scale. Thus, 204 estrogen receptor positive (ER+) and 67 estrogen receptor negative (ER-) breast cancer tissues were investigated using GC-TOFMS based metabolomics. 19 metabolites were detected as altered in a predefined training set (2/3 of tumors) and could be validated in a predefined validation set (1/3 of tumors). The metabolite changes included increases in beta-alanine, 2-hydroyglutarate, glutamate, xanthine and decreases in glutamine in the ER- subtype. Beta-alanine demonstrated the strongest change between ER- and ER+ breast cancer (fold change=2.4, p=1.5E-20). In a correlation analysis with genome-wide expression data in a subcohort of 154 tumors, we found a strong negative correlation (Spearman R=-0.62) between beta-alanine and 4-aminobutyrate aminotransferase (ABAT). Immunohistological analysis confirmed down-regulation of the ABAT protein in ER- breast cancer. In a Kaplan-Meier analysis of a large external expression data set, the ABAT transcript was demonstrated to be a positive prognostic marker for breast cancer (HR=0.6, p=3.2E-15). BIOLOGICAL SIGNIFICANCE: It is well-known for more than a decade that breast cancer exhibits distinct gene expression patterns depending on the molecular subtype defined by estrogen receptor (ER) and HER2 status. Here, we show that breast cancer exhibits distinct metabolomics patterns depending on ER status. Our observation supports the current view of ER+ breast cancer and ER- breast as different diseases requiring different treatment strategies. Metabolic drugs for cancer including glutaminase inhibitors are currently under development and tested in clinical trials. We found glutamate enriched and glutamine reduced in ER- breast cancer compared to ER+ breast cancer and compared to normal breast tissues. Thus, metabolomics analysis highlights the ER- subtype as a preferential target for glutaminase inhibitors. For the first time, we report on a regulation of beta-alanine catabolism in cancer. In breast cancer, ABAT transcript expression was variable and correlated with ER status. Low ABAT transcript expression was associated with low ABAT protein expression and high beta-alanine concentration. In a large external microarray cohort, low ABAT expression shortened recurrence-free survival in breast cancer, ER+ breast cancer and ER- breast cancer.
    Type of Publication: Journal article published
    PubMed ID: 24125731
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...