Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1424
    Keywords: Na-gradient coupled transports ; amino acid transports ; electrogenic transports ; epithelial cells ; Xenopus laevis embryo
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary The electrical responses induced by external applications of neutral amino acids were used to determine whether different carriers are expressed in the membrane of embryonic epithelial cells ofXenopus laevis. Competition experiments were performed under voltage-clamp conditions at constant membrane potential. Gly,l-Ala,l-Pro,l-Ser,l-Asn andl-Gln generate electrical responses with similar apparent kinetic constants and compete for the same carrier. They are [Na] o and voltage-dependent, insensitive to variations in [Cl] o and [HCO3] o , inhibited by pH o changes, by amiloride and, for a large fraction of the current, by MeAIB. The increase in [K] o at constant and negative membrane potential reduces the response, whereas lowering [K] o augments it. l-Leu,l-Phe andl-Pro appear to compete for another carrier. They generate electrogenic responses insensitive to amiloride and MeAIB, as well as to alterations of membrane potential, [Na] o and [K] o . Lowering [Cl] o decreases their size, whereas increasing [HCO3] o at neutral pH o increases it. It is concluded that at least two and possibly three transport systems (A, ASC and L) are expressed in the membrane of the embryonic cells studied. An unexpected electrogenic character of the L system is revealed by the present study and seems to be indirectly linked to the transport function. l-Pro seems to be transported by system A or ASC in the presence of Na and by system L in the absence of Na. MeAIB induces an inward current.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...