Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: GENE ; TUMORS ; MECHANISM ; MUTATION ; DUPLICATION ; CENTRAL-NERVOUS-SYSTEM ; LOW-GRADE ASTROCYTOMAS ; GLIOMAS ; B-RAF ; neurofibromatosis type 1 ; Pilocytic astrocytoma ; MAPK PATHWAY ; MAPK PATHWAY ACTIVATION ; insertion mutagenesis
    Abstract: Pilocytic astrocytoma (PA) is emerging as a tumor entity with dysregulated Ras/Raf/MEK/ERK signaling. Common genetic lesions observed in PA, which are linked to aberrant ERK pathway activity include either NF1 inactivation, KRAS or BRAF gain-of-function mutations. In order to investigate the mutation spectrum within the proto-oncogene encoding the Ser/Thr-kinase B-Raf in more detail, we analyzed 64 primary tumor samples from children with PA including two patients with neurofibromatosis type 1 (NF1). The well-known BRAF(V600E) mutation was found in 6/64 (9.38%) of our samples. For the first time, we report concomitant presence of a somatic BRAF(V600E) mutation in an NF1 patient indicating that more than one Ras/ERK pathway component can be affected in PA. Furthermore, 2/64 (3.13%) of our samples carried a 3-bp insertion in BRAF resulting in the duplication of threonine 599. This conserved residue is located within the activation segment and, if phosphorylated in a Ras-dependent manner, plays a key role in Raf activation. Here, we demonstrate that this mutant (B-Raf(insT)) and another B-Raf mutant, which carries two additional threonine residues at this position, display an in vitro kinase activity and cellular MEK/ERK activation potential comparable to those of B-Raf(V600E). Notably, replacement of threonines by valine residues had similar effects on B-Raf activity suggesting that the distortion of the peptide backbone by additional amino acids rather than the insertion of additional, potential phosphorylation sites destabilizes the inactive conformation of the kinase domain. We also demonstrate that B-Raf(insT) and B-Raf(V600E), but not B-Raf(wt), provoke drastic morphological alterations in human astrocytes.
    Type of Publication: Journal article published
    PubMed ID: 21190184
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: proliferation ; TRIAL ; METASTATIC MELANOMA ; B-RAF ; NON-HODGKIN-LYMPHOMA ; IMPROVED SURVIVAL ; OPEN-LABEL ; MEK INHIBITION ; DABRAFENIB ; RAF INHIBITORS
    Abstract: Patients with BRAFV600E/K-driven melanoma respond to the BRAF inhibitor vemurafenib due to subsequent deactivation of the proliferative RAS/RAF/MEK/ERK pathway. In BRAF WT cells and those with mutations that activate or result in high levels of the BRAF activator RAS, BRAF inhibition can lead to ERK activation, resulting in tumorigenic transformation. We describe a patient with malignant melanoma who developed chronic lymphocytic leukemia (CLL) in the absence of RAS mutations during vemurafenib treatment. BRAF inhibition promoted patient CLL proliferation in culture and in murine xenografts and activated MEK/ERK in primary CLL cells from additional patients. BRAF inhibitor-driven ERK activity and CLL proliferation required B cell antigen receptor (BCR) activation, as inhibition of the BCR-proximal spleen tyrosine kinase (SYK) reversed ERK hyperactivation and proliferation of CLL cells from multiple patients, while inhibition of the BCR-distal Bruton tyrosine kinase had no effect. Additionally, the RAS-GTP/RAS ratio in primary CLL cells exposed to vemurafenib was reduced upon SYK inhibition. BRAF inhibition increased mortality and CLL expansion in mice harboring CLL xenografts; however, SYK or MEK inhibition prevented CLL proliferation and increased animal survival. Together, these results suggest that BRAF inhibitors promote B cell malignancies in the absence of obvious mutations in RAS or other receptor tyrosine kinases and provide a rationale for combined BRAF/MEK or BRAF/SYK inhibition.
    Type of Publication: Journal article published
    PubMed ID: 25329694
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: EXPRESSION ; prognosis ; UP-REGULATION ; MUTATION ; COLON-CANCER ; C-MYC ; K-RAS ; VEMURAFENIB ; AGGRESSIVE ADENOCARCINOMA ; FACTOR CDX2
    Abstract: BRAF mutations are associated with aggressive, less-differentiated and therapy-resistant colorectal carcinoma. However, the underlying mechanisms for these correlations remain unknown. To understand how oncogenic B-Raf contributes to carcinogenesis, in particular to aspects other than cellular proliferation and survival, we generated three isogenic human colorectal carcinoma cell line models in which we can dynamically modulate the expression of the B-Raf(V600E) oncoprotein. Doxycyclin-inducible knockdown of endogenous B-Raf(V600E) decreases cellular motility and invasion in conventional and three-dimensional (3D) culture, whereas it promotes cell-cell contacts and induces various hallmarks of differentiated epithelia. Importantly, all these effects are recapitulated by B-Raf (PLX4720, vemurafenib, and dabrafenib) or MEK inhibitors (trametinib). Surprisingly, loss of B-Raf(V600E) in HT29 xenografts does not only stall tumor growth, but also induces glandular structures with marked expression of CDX2, a tumor-suppressor and master transcription factor of intestinal differentiation. By performing the first transcriptome profiles of PLX4720-treated 3D cultures of HT29 and Colo-205 cells, we identify several upregulated genes linked to epithelial differentiation and effector functions, such as claudin-1, a Cdx-2 target gene encoding a critical tight junction component. Thereby, we provide a mechanism for the clinically observed correlation between mutant BRAF and the loss of Cdx-2 and claudin-1. PLX4720 also suppressed several metastasis-associated transcripts that have not been implicated as targets, effectors or potential biomarkers of oncogenic B-Raf signaling so far. Together, we identify a novel facet of clinically applied B-Raf or MEK inhibitors by showing that they promote cellular adhesion and differentiation of colorectal carcinoma cells.
    Type of Publication: Journal article published
    PubMed ID: 25381152
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: proliferation ; IDENTIFICATION ; MASS-SPECTROMETRY ; TUMOR-MARKERS ; TRANSFER-RNA ; MODIFIED URINARY NUCLEOSIDES ; METHYLTHIOADENOSINE PHOSPHORYLASE ; NICOTINAMIDE RIBOSIDE ; MS ANALYSIS ; 1-METHYLADENOSINE
    Abstract: Cancer cells show characteristic effects on cellular turnover and DNA/RNA modifications leading to elevated levels of excreted modified nucleosides. We investigated the molecular signature of different subtypes of breast cancer cell lines and the breast epithelial cell line MCF-10A. Prepurification of cell culture supernatants was performed by cis-diol specific affinity chromatography using boronate-derivatized polyacrylamide gel. Samples were analyzed by application of reversed phase chromatography coupled to a triple quadrupole mass spectrometer. Collectively, we determined 23 compounds from RNA metabolism, two from purine metabolism, five from polyamine/methionine cycle, one from histidine metabolism and two from nicotinate and nicotinamide metabolism. We observed major differences of metabolite excretion pattern between the breast cancer cell lines and MCF-10A, just as well as between the different breast cancer cell lines themselves. Differences in metabolite excretion resulting from cancerous metabolism can be integrated into altered processes on the cellular level. Modified nucleosides have great potential as biomarkers in due consideration of the heterogeneity of breast cancer that is reflected by the different molecular subtypes of breast cancer. Our data suggests that the metabolic signature of breast cancer cell lines might be a more subtype-specific tool to predict breast cancer, rather than a universal approach.
    Type of Publication: Journal article published
    PubMed ID: 26293811
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: EXPRESSION ; DOWN-REGULATION ; BREAST-CANCER ; METASTASIS ; COLORECTAL-CANCER ; CD44 ; E-cadherin ; EPITHELIAL-MESENCHYMAL TRANSITION ; PROSPECTIVE IDENTIFICATION ; ZEB1
    Abstract: Invasion and metastasis of carcinomas are often activated by induction of aberrant epithelial-mesenchymal transition (EMT). This is mainly driven by the transcription factor ZEB1, promoting tumor-initiating capacity correlated with increased expression of the putative stem cell marker CD44. However, the direct link between ZEB1, CD44 and tumourigenesis is still enigmatic. Remarkably, EMT-induced repression of ESRP1 controls alternative splicing of CD44, causing a shift in the expression from the variant CD44v to the standard CD44s isoform. We analyzed whether CD44 and ZEB1 regulate each other and show that ZEB1 controls CD44s splicing by repression of ESRP1 in breast and pancreatic cancer. Intriguingly, CD44s itself activates the expression of ZEB1, resulting in a self-sustaining ZEB1 and CD44s expression. Activation of this novel CD44s-ZEB1 regulatory loop has functional impact on tumor cells, as evident by increased tumor-sphere initiation capacity, drug-resistance and tumor recurrence. In summary, we identified a self-enforcing feedback loop that employs CD44s to activate ZEB1 expression. This renders tumor cell stemness independent of external stimuli, as ZEB1 downregulates ESRP1, further promoting CD44s isoform synthesis.
    Type of Publication: Journal article published
    PubMed ID: 26077342
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Abstract: Activating BRAF mutations, in particular V600E/K, drive many cancers and are considered mutually exclusive with mutant RAS, whereas inactivating BRAF mutations in the D594F595G596 motif cooperate with RAS via paradoxical MEK/ERK activation. Due to the increasing use of comprehensive tumor genomic profiling, many non-V600 BRAF mutations are being detected whose functional consequences and therapeutic actionability are often unknown. We investigated an atypical BRAF mutation, F595L, which was identified along with mutant HRAS in histiocytic sarcoma and also occurs in epithelial cancers, melanoma and neuroblastoma, and determined its interaction with mutant RAS. Unlike other DFG motif mutants, BRAFF595L is a gain-of-function variant with intermediate activity that does not act paradoxically, but nevertheless cooperates with mutant RAS to promote oncogenic signaling, which is efficiently blocked by pan-RAF and MEK inhibitors. Mutation data from patients and cell lines show that BRAFF595L, as well as other intermediate-activity BRAF mutations, frequently coincide with mutant RAS in various cancers. These data define a distinct class of activating BRAF mutations, extend the spectrum of patients with systemic histiocytoses and other malignancies who are candidates for therapeutic blockade of the RAF-MEK-ERK pathway and underscore the value of comprehensive genomic testing for uncovering the vulnerabilities of individual tumors.Leukemia accepted article preview online, 19 November 2015. doi:10.1038/leu.2015.319.
    Type of Publication: Journal article published
    PubMed ID: 26582644
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Abstract: Despite being mutated in cancer and RASopathies, the role of the activation segment (AS) has not been addressed for B-Raf signaling in vivo. Here, we generated a conditional knock-in mouse allowing the expression of the B-Raf(AVKA) mutant in which the AS phosphoacceptor sites T599 and S602 are replaced by alanine residues. Surprisingly, despite producing a kinase-impaired protein, the Braf(AVKA) allele does not phenocopy the lethality of Braf-knockout or paradoxically acting knock-in alleles. However, Braf(AVKA) mice display abnormalities in the hematopoietic system, a distinct facial morphology, reduced ERK pathway activity in the brain, and an abnormal gait. This phenotype suggests that maximum B-Raf activity is required for the proper development, function, and maintenance of certain cell populations. By establishing conditional murine embryonic fibroblast cultures, we further show that MEK/ERK phosphorylation and the immediate early gene response toward growth factors are impaired in the presence of B-Raf(AVKA). Importantly, alanine substitution of T599/S602 impairs the transformation potential of oncogenic non-V600E B-Raf mutants and a fusion protein, suggesting that blocking their phosphorylation could represent an alternative strategy to ATP-competitive inhibitors.
    Type of Publication: Journal article published
    PubMed ID: 26657898
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Abstract: BACKGROUND: Chronic myeloid leukemia (CML) is driven by the fusion kinase Bcr-Abl. Bcr-Abl tyrosine kinase inhibitors (TKIs), such as imatinib mesylate (IM), revolutionized CML therapy. Nevertheless, about 20 % of CMLs display primary or acquired TKI resistance. TKI resistance can be either caused by mutations within the Bcr-Abl kinase domain or by aberrant signaling by its effectors, e.g. Lyn or Gab2. Bcr-Abl mutations are frequently observed in TKI resistance and can only in some cases be overcome by second line TKIs. In addition, we have previously shown that the formation of Gab2 complexes can be regulated by Bcr-Abl and that Gab2 signaling counteracts the efficacy of four distinct Bcr-Abl inhibitors. Therefore, TKI resistance still represents a challenge for disease management and alternative therapies are urgently needed. FINDINGS: Using different CML cell lines and models, we identified the clinically approved TKIs sorafenib (SF) and axitinib (AX) as drugs overcoming the resistance mediated by the Bcr Abl(T315I) mutant as well as the one mediated by Gab2 and Lyn(Y508F). In addition, we demonstrated that AX mainly affects the Bcr-Abl/Grb2/Gab2 axis, whereas SF seems to act independently of the fusion kinase and most likely by blocking signaling pathways up- and downstream of Gab2. CONCLUSION: We demonstrate that SF and AX show potency in various and mechanistically distinct scenarios of TKI resistance, including Bcr-Abl(T315I) as well as Lyn- and Gab2-mediated resistances. Our data invites for further evaluation und consideration of these inhibitors in the treatment of TKI resistant CML.
    Type of Publication: Journal article published
    PubMed ID: 26912052
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Abstract: Pilocytic astrocytoma (PA) is the most frequent pediatric brain tumor. Activation of the MAPK pathway is well established as the oncogenic driver of the disease. It is most frequently caused by KIAA1549:BRAF fusions, and leads to oncogene induced senescence (OIS). OIS is thought to be a major reason for growth arrest of PA cells in vitro and in vivo, preventing establishment of PA cultures. Hence, valid preclinical models are currently very limited, but preclinical testing of new compounds is urgently needed. We transduced the PA short-term culture DKFZ-BT66 derived from the PA of a 2-year old patient with a doxycycline-inducible system coding for Simian Vacuolating Virus 40 Large T Antigen (SV40-TAg). SV40-TAg inhibits TP53/CDKN1A and CDKN2A/RB1, two pathways critical for OIS induction and maintenance. DNA methylation array and KIAA1549:BRAF fusion analysis confirmed pilocytic astrocytoma identity of DKFZ-BT66 cells after establishment. Readouts were analyzed in proliferating as well as senescent states, including cell counts, viability, cell cycle analysis, expression of SV40-Tag, CDKN2A (p16), CDKN1A (p21), and TP53 (p53) protein, and gene-expression profiling. Selected MAPK inhibitors (MAPKi) including clinically available MEK inhibitors (MEKi) were tested in vitro. Expression of SV40-TAg enabled the cells to bypass OIS and to resume proliferation with a mean doubling time of 45h allowing for propagation and long-term culture. Withdrawal of doxycycline led to an immediate decrease of SV40-TAg expression, appearance of senescent morphology, upregulation of CDKI proteins and a subsequent G1 growth arrest in line with the re-induction of senescence. DKFZ-BT66 cells still underwent replicative senescence that was overcome by TERT expression. Testing of a set of MAPKi revealed differential responses in DKFZ-BT66. MEKi efficiently inhibited MAPK signaling at clinically achievable concentrations, while BRAF V600E- and RAF Type II inhibitors showed paradoxical activation. Taken together, we have established the first patient-derived long term expandable PA cell line expressing the KIAA1549:BRAF-fusion suitable for preclinical drug testing.
    Type of Publication: Journal article published
    PubMed ID: 28002790
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Abstract: The activating mutation of the BRAF serine/threonine protein kinase (BRAF V600E) is the key driver mutation in hairy cell leukemia (HCL), suggesting opportunities for therapeutic targeting. We analyzed the course of 21 HCL patients treated with vemurafenib outside of trials with individual dosing regimens (240-1920 mg/d; median treatment duration, 90 days). Vemurafenib treatment improved blood counts in all patients, with platelets, neutrophils, and hemoglobin recovering within 28, 43, and 55 days (median), respectively. Complete remission was achieved in 40% (6/15 of evaluable patients) and median event-free survival was 17 months. Response rate and kinetics of response were independent of vemurafenib dosing. Retreatment with vemurafenib led to similar response patterns (n = 6). Pharmacodynamic analysis of BRAF V600E downstream targets showed that vemurafenib (480 mg/d) completely abrogated extracellular signal-regulated kinase phosphorylation of hairy cells in vivo. Typical side effects also occurred at low dosing regimens. We observed the development of acute myeloid lymphoma (AML) subtype M6 in 1 patient, and the course suggested disease acceleration triggered by vemurafenib. The phosphatidylinositol 3-kinase hotspot mutation (E545K) was identified in the AML clone, providing a potential novel mechanism for paradoxical BRAF activation. These data provide proof of dependence of HCL on active BRAF signaling. We provide evidence that antitumor and side effects are observed with 480 mg vemurafenib, suggesting that dosing regimens in BRAF-driven cancers could warrant reassessment in trials with implications for cost of cancer care.
    Type of Publication: Journal article published
    PubMed ID: 26941398
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...