Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-07-06
    Description: Mutations in the IDH1 and IDH2 genes encoding isocitrate dehydrogenases are frequently found in human glioblastomas and cytogenetically normal acute myeloid leukaemias (AML). These alterations are gain-of-function mutations in that they drive the synthesis of the 'oncometabolite' R-2-hydroxyglutarate (2HG). It remains unclear how IDH1 and IDH2 mutations modify myeloid cell development and promote leukaemogenesis. Here we report the characterization of conditional knock-in (KI) mice in which the most common IDH1 mutation, IDH1(R132H), is inserted into the endogenous murine Idh1 locus and is expressed in all haematopoietic cells (Vav-KI mice) or specifically in cells of the myeloid lineage (LysM-KI mice). These mutants show increased numbers of early haematopoietic progenitors and develop splenomegaly and anaemia with extramedullary haematopoiesis, suggesting a dysfunctional bone marrow niche. Furthermore, LysM-KI cells have hypermethylated histones and changes to DNA methylation similar to those observed in human IDH1- or IDH2-mutant AML. To our knowledge, our study is the first to describe the generation and characterization of conditional IDH1(R132H)-KI mice, and also the first report to demonstrate the induction of a leukaemic DNA methylation signature in a mouse model. Our report thus sheds light on the mechanistic links between IDH1 mutation and human AML.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005896/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005896/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sasaki, Masato -- Knobbe, Christiane B -- Munger, Joshua C -- Lind, Evan F -- Brenner, Dirk -- Brustle, Anne -- Harris, Isaac S -- Holmes, Roxanne -- Wakeham, Andrew -- Haight, Jillian -- You-Ten, Annick -- Li, Wanda Y -- Schalm, Stefanie -- Su, Shinsan M -- Virtanen, Carl -- Reifenberger, Guido -- Ohashi, Pamela S -- Barber, Dwayne L -- Figueroa, Maria E -- Melnick, Ari -- Zuniga-Pflucker, Juan-Carlos -- Mak, Tak W -- R01 AI081773/AI/NIAID NIH HHS/ -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2012 Aug 30;488(7413):656-9. doi: 10.1038/nature11323.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 2C1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22763442" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Animals ; Bone Marrow/pathology ; Cell Lineage ; CpG Islands/genetics ; DNA Methylation ; Disease Models, Animal ; Epigenesis, Genetic/*genetics ; Female ; Gene Knock-In Techniques ; Glioma/pathology ; Hematopoiesis ; Hematopoietic Stem Cells/*cytology/metabolism ; Histones/metabolism ; Humans ; Isocitrate Dehydrogenase/*genetics/*metabolism ; Leukemia, Myeloid, Acute/genetics ; Male ; Mice ; Mutant Proteins/genetics/*metabolism ; Mutation/*genetics ; Myeloid Cells/cytology/metabolism ; Spleen/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2133
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Background  Basal cell carcinoma (BCC) of the skin is the most common human cancer. The genetic alterations underlying BCC development are only partly understood.Objectives  To investigate further the molecular genetics of sporadic BCCs, we performed mutation analyses of 10 skin cancer-associated genes in 42 tumours.Methods  Single-strand conformational polymorphism analysis followed by DNA sequencing was used to screen for mutations in the sonic hedgehog pathway genes PTCH, SMOH, SUFUH and GLI1, in the TP53 tumour suppressor gene, and in the proto-oncogenes NRAS, KRAS, HRAS, BRAF and CTNNB1. Microsatellite markers flanking the PTCH, SUFUH and TP53 loci at 9q22, 10q24 and 17p13, respectively, were studied for loss of heterozygosity (LOH).Results  PTCH mutations were found in 28 of 42 tumours (67%). Microsatellite analysis revealed LOH on 9q22 in 20 of 38 tumours investigated (53%), including 14 tumours with and six tumours without PTCH mutations. SMOH mutations were identified in four of the 42 BCCs (10%) while two tumours demonstrated mutations in SUFUH, including one missense mutation and one silent mutation. None of the BCCs showed LOH at markers flanking the SUFUH locus. Seventeen BCCs (40%) carried TP53 mutations, with only three tumours showing evidence of biallelic TP53 inactivation. TP53 mutations were present in BCCs with and without mutations in PTCH, SMOH or SUFUH. Interestingly, 72% of the TP53 alterations were presumably ultraviolet (UV)-induced transition mutations. In contrast, only 40% of the PTCH and SMOH alterations corresponded to UV signature mutations. No mutations were identified in GLI1, NRAS, KRAS, HRAS, BRAF or CTNNB1.Conclusions  Our data confirm the importance of PTCH, SMOH and TP53 mutations in the pathogenesis of sporadic BCCs. SUFUH alterations are restricted to individual cases while the other investigated genes do not appear to be important targets for mutations in BCCs.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...