Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Fully-coherent Si0.7Ge0.3 layers were deposited on Si(001) by gas-source molecular beam epitaxy (GS-MBE) from Ge2H6/Si2H6 mixtures in order to probe the effect of steady-state hydrogen coverages θH on surface morphological evolution during the growth of compressively strained films. The layers are grown as a function of thickness t at temperatures, Ts=450–550 °C, for which strain-induced roughening is observed during solid-source MBE (SS-MBE) and deposition from hyperthermal beams. With GS-MBE, we obtain three-dimensional (3D) strain-induced growth mounds in samples deposited at Ts=550 °C for which θH is small, 0.11 monolayer (ML). However, mound formation is dramatically suppressed at 500 °C (θH=0.26 ML) and completely eliminated at 450 °C (θH=0.52 ML). We attribute these large differences in surface morphological evolution primarily to θH(Ts)-induced effects on film growth rates R, adatom diffusion rates Ds, and ascending step-crossing probabilities. GS-MBE Si0.7Ge0.3(001) growth at 450 °C remains two dimensional, with a surface width 〈w〉〈0.15 nm, at all film thicknesses t=11–80 nm, since both R and the rate of mass transport across ascending steps are low. Raising Ts to 500 °C increases R faster than Ds leading to shorter mean surface diffusion lengths and the formation of extremely shallow, rounded growth mounds for which 〈w〉 remains essentially constant at (similar, equals)0.2 nm while the in-plane coherence length 〈d〉 increases from (similar, equals)70 nm at t=14 nm to 162 nm with t=75 nm. The low ascending step crossing probability at 500 °C results in mounds that spread laterally, rather than vertically, due to preferential attachment at the mound edges. At Ts=550 °C, the ascending step crossing probability increases due to both higher thermal activation and lower hydrogen coverages. 〈w〉(t) increases by more than a factor of 10, from 0.13 nm at t=15 nm to 1.9 nm at t=105 nm, while the in-plane coherence length 〈d〉 remains constant at (similar, equals)85 nm. This leads, under the strain driving force, to the formation of self-organized 3D {105}-faceted pyramids at 550 °C which are very similar to those observed during SS-MBE. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physical Chemistry 39 (1988), S. 93-121 
    ISSN: 0066-426X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-08-10
    Description: The high density of heat generated in power electronics and optoelectronic devices is a critical bottleneck in their application. New materials with high thermal conductivity are needed to effectively dissipate heat and thereby enable enhanced performance of power controls, solid-state lighting, communication, and security systems. We report the experimental discovery of high thermal conductivity at room temperature in cubic boron arsenide (BAs) grown through a modified chemical vapor transport technique. The thermal conductivity of BAs, 1000 ± 90 watts per meter per kelvin meter-kelvin, is higher than that of silicon carbide by a factor of 3 and is surpassed only by diamond and the basal-plane value of graphite. This work shows that BAs represents a class of ultrahigh–thermal conductivity materials predicted by a recent theory, and that it may constitute a useful thermal management material for high–power density electronic devices.
    Keywords: Physics, Applied, Materials Science
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...