Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1615-6102
    Keywords: Mycorrhiza ; Pisonia ; Root epidermis ; Transfer cell
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Cells of the root epidermis ofPisonia grandis R. Br. at the interface with the mycorrhizal fungus are modified as transfer cells. The length of wall profile in transverse section is increased 1.7-fold by the wall ingrowths, on average, over the outer tangential wall and the outer third of the radial walls; this corresponds to a 1.3—fold increase in wall profile length over the whole cell. These increases in length of wall profile approximate—slightly underestimating-the amplification of surface area of the epidermal cells that results from the ingrowths. The surface area between the symbionts in thePisonia mycorrhiza is less amplified than in classical ectomycorrhizas with a Hartig net: this may be functionally adequate because of the extremely high nutrient status of theP. grandis habitat.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1615-6102
    Keywords: Apoplastic permeability ; Cellufluor ; Sheath structure ; Mycorrhiza ; Pisonia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The tracer Cellufluor has been used to test the apoplastic permeability of the fungal sheath inPisonia grandis R. Br. mycorrhizas. In the tip region in the immediate vicinity of the root cap, where the sheath is not yet fully differentiated, Celluflor penetrates as far as the root epidermal cells. Behind this (i.e. just proximal to it) in differentiated regions, where the ultrastructure of both the root and fungal cells indicates that the mycorrhiza is likely to be functionally active, the sheath is impermeable to Cellufluor. During the development and differentiation of the sheath, the interhyphal spaces become filled with extracellular material. In the outer and middle regions this becomes electron opaque after fixation and staining. It is proposed that the dramatic decrease in apoplastic permeability over a short distance back from the root apex as the fungal sheath differentiates results from secretion of extracellular material by the fungus and its modification by deposition of phenolic substances. The symplastic pathway within the fungus may be very important for radial transfer of materials across the sheath. Blockage of the sheath apoplast could provide a sealed apoplastic compartment at the fungus-root interface, with resulting increase in efficiency of transfer between partners. The implications of these observations are discussed in relation to radial transfer across the sheath and transfer between partners in sheathing mycorrhizas in general.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry 4 (1912), S. 901-903 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...