Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: EXPRESSION ; TUMORS ; ABERRATIONS ; METHYLATION ; EMBRYONIC STEM-CELLS ; MULTIFORME ; HIGH-GRADE GLIOMAS ; TELOMERES ; INTEGRATED GENOMIC ANALYSIS ; ATRX
    Abstract: Glioblastoma multiforme (GBM) is a lethal brain tumour in adults and children. However, DNA copy number and gene expression signatures indicate differences between adult and paediatric cases(1-4). To explore the genetic events underlying this distinction, we sequenced the exomes of 48 paediatric GBM samples. Somatic mutations in the H3.3-ATRX-DAXX chromatin remodelling pathway were identified in 44% of tumours (21/48). Recurrent mutations in H3F3A, which encodes the replication-independent histone 3 variant H3.3, were observed in 31% of tumours, and led to amino acid substitutions at two critical positions within the histone tail (K27M, G34R/G34V) involved in key regulatory post-translational modifications. Mutations in ATRX (alpha-thalassaemia/mental retardation syndrome X-linked)(5) and DAXX (death-domain associated protein), encoding two subunits of a chromatin remodelling complex required for H3.3 incorporation at pericentric heterochromatin and telomeres(6,7), were identified in 31% of samples overall, and in 100% of tumours harbouring a G34R or G34V H3.3 mutation. Somatic TP53 mutations were identified in 54% of all cases, and in 86% of samples with H3F3A and/or ATRX mutations. Screening of a large cohort of gliomas of various grades and histologies (n = 784) showed H3F3A mutations to be specific to GBM and highly prevalent in children and young adults. Furthermore, the presence of H3F3A/ATRX-DAXX/TP53 mutations was strongly associated with alternative lengthening of telomeres and specific gene expression profiles. This is, to our knowledge, the first report to highlight recurrent mutations in a regulatory histone in humans, and our data suggest that defects of the chromatin architecture underlie paediatric and young adult GBM pathogenesis
    Type of Publication: Journal article published
    PubMed ID: 22286061
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Abstract: TP53 mutations confer subgroup specific poor survival for children with medulloblastoma. We hypothesized that WNT activation which is associated with improved survival for such children abrogates TP53 related radioresistance and can be used to sensitize TP53 mutant tumors for radiation. We examined the subgroup-specific role of TP53 mutations in a cohort of 314 patients treated with radiation. TP53 wild-type or mutant human medulloblastoma cell-lines and normal neural stem cells were used to test radioresistance of TP53 mutations and the radiosensitizing effect of WNT activation on tumors and the developing brain. Children with WNT/TP53 mutant medulloblastoma had higher 5-year survival than those with SHH/TP53 mutant tumours (100% and 36.6%+/-8.7%, respectively (p〈0.001)). Introduction of TP53 mutation into medulloblastoma cells induced radioresistance (survival fractions at 2Gy (SF2) of 89%+/-2% vs. 57.4%+/-1.8% (p〈0.01)). In contrast, beta-catenin mutation sensitized TP53 mutant cells to radiation (p〈0.05). Lithium, an activator of the WNT pathway, sensitized TP53 mutant medulloblastoma to radiation (SF2 of 43.5%+/-1.5% in lithium treated cells vs. 56.6+/-3% (p〈0.01)) accompanied by increased number of gammaH2AX foci. Normal neural stem cells were protected from lithium induced radiation damage (SF2 of 33%+/-8% for lithium treated cells vs. 27%+/-3% for untreated controls (p=0.05). Poor survival of patients with TP53 mutant medulloblastoma may be related to radiation resistance. Since constitutive activation of the WNT pathway by lithium sensitizes TP53 mutant medulloblastoma cells and protect normal neural stem cells from radiation, this oral drug may represent an attractive novel therapy for high-risk medulloblastomas.
    Type of Publication: Journal article published
    PubMed ID: 25539912
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Abstract: Chromothripsis is a recently discovered form of genomic instability, characterized by tens to hundreds of clustered DNA rearrangements resulting from a single dramatic event. Telomere dysfunction has been suggested to play a role in the initiation of this phenomenon, which occurs in a large number of tumor entities. Here, we show that telomere attrition can indeed lead to catastrophic genomic events, and that telomere patterns differ between cells analyzed before and after such genomic catastrophes. Telomere length and telomere stabilization mechanisms diverge between samples with and without chromothripsis in a given tumor subtype. Longitudinal analyses of the evolution of chromothriptic patterns identify either stable patterns between matched primary and relapsed tumors, or loss of the chromothriptic clone in the relapsed specimen. The absence of additional chromothriptic events occurring between the initial tumor and the relapsed tumor sample points to telomere stabilization after the initial chromothriptic event which prevents further shattering of the genome.
    Type of Publication: Journal article published
    PubMed ID: 26856307
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Abstract: The identification of new biomarkers to differentiate between indolent and aggressive prostate tumors is an important unmet need. We examined the role of THOR (TERT Hypermethylated Oncological Region) as a diagnostic and prognostic biomarker in prostate cancer (PCa).We analyzed THOR in common cancers using genome-wide methylation arrays. Methylation status of the whole TERT gene in benign and malignant prostate samples was determined by MeDIP-Seq. The prognostic role of THOR in PCa was assessed by pyrosequencing on discovery and validation cohorts from patients who underwent radical prostatectomy with long-term follow-up data.Most cancers (n = 3056) including PCa (n = 300) exhibited hypermethylation of THOR. THOR was the only region within the TERT gene that is differentially methylated between normal and malignant prostate tissue (p 〈 0.0001). Also, THOR was significantly hypermethylated in PCa when compared to paired benign tissues (n = 164, p 〈 0.0001). THOR hypermethylation correlated with Gleason scores and was associated with tumor invasiveness (p = 0.0147). Five years biochemical progression free survival (BPFS) for PCa patients in the discovery cohort was 87% (95% CI 73-100) and 65% (95% CI 52-78) for THOR non-hypermethylated and hypermethylated cancers respectively (p = 0.01). Similar differences in BPFS were noted in the validation cohort (p = 0.03). Importantly, THOR was able to predict outcome in the challenging (Gleason 6 and 7 (3 + 4)) PCa (p = 0.007). For this group, THOR was an independent risk factor for BPFS with a hazard-ratio of 3.685 (p = 0.0247). Finally, THOR hypermethylation more than doubled the risk of recurrence across all PSA levels (OR 2.5, p = 0.02).
    Type of Publication: Journal article published
    PubMed ID: 27437772
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Abstract: PURPOSE: Reports detailing the prognostic impact of TP53 mutations in medulloblastoma offer conflicting conclusions. We resolve this issue through the inclusion of molecular subgroup profiles. PATIENTS AND METHODS: We determined subgroup affiliation, TP53 mutation status, and clinical outcome in a discovery cohort of 397 medulloblastomas. We subsequently validated our results on an independent cohort of 156 medulloblastomas. RESULTS: TP53 mutations are enriched in wingless (WNT; 16%) and sonic hedgehog (SHH; 21%) medulloblastomas and are virtually absent in subgroups 3 and 4 tumors (P 〈 .001). Patients with SHH/TP53 mutant tumors are almost exclusively between ages 5 and 18 years, dramatically different from the general SHH distribution (P 〈 .001). Children with SHH/TP53 mutant tumors harbor 56% germline TP53 mutations, which are not observed in children with WNT/TP53 mutant tumors. Five-year overall survival (OS; +/- SE) was 41% +/- 9% and 81% +/- 5% for patients with SHH medulloblastomas with and without TP53 mutations, respectively (P 〈 .001). Furthermore, TP53 mutations accounted for 72% of deaths in children older than 5 years with SHH medulloblastomas. In contrast, 5-year OS rates were 90% +/- 9% and 97% +/- 3% for patients with WNT tumors with and without TP53 mutations (P = .21). Multivariate analysis revealed that TP53 status was the most important risk factor for SHH medulloblastoma. Survival rates in the validation cohort mimicked the discovery results, revealing that poor survival of TP53 mutations is restricted to patients with SHH medulloblastomas (P = .012) and not WNT tumors. CONCLUSION: Subgroup-specific analysis reconciles prior conflicting publications and confirms that TP53 mutations are enriched among SHH medulloblastomas, in which they portend poor outcome and account for a large proportion of treatment failures in these patients.
    Type of Publication: Journal article published
    PubMed ID: 23835706
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
  • 7
  • 8
    Keywords: CANCER ; SURVIVAL ; DNA methylation ; MUTATIONS ; HTERT GENE ; GLIOBLASTOMA ; MAINTENANCE ; human telomerase ; PEDIATRIC INTRACRANIAL EPENDYMOMA ; REVERSE-TRANSCRIPTASE EXPRESSION
    Abstract: BACKGROUND: Identification of robust biomarkers of malignancy and methods to establish disease progression is a major goal in paediatric neuro-oncology. We investigated whether methylation of the TERT promoter can be a biomarker for malignancy and patient outcome in paediatric brain tumours. METHODS: For the discovery cohort, we used samples obtained from patients with paediatric brain tumours and individuals with normal brain tissues stored at the German Cancer Research Center (Heidelberg, Germany). We used methylation arrays for genome-wide assessment of DNA. For the validation cohort, we used samples obtained from several tissues for which full clinical and follow-up data were available from two hospitals in Toronto (ON, Canada). We did methylation analysis using quantitative Sequenom and pyrosequencing of an identified region of the TERT promoter. We assessed TERT expression by real-time PCR. To establish whether the biomarker could be used to assess and predict progression, we analysed methylation in paired samples of tumours that transformed from low to high grade and from localised to metastatic, and in choroid plexus tumours of different grades. Finally, we investigated overall survival in patients with posterior fossa ependymomas in which the identified region was hypermethylated or not. All individuals responsible for assays were masked to the outcome of the patients. FINDINGS: Analysis of 280 samples in the discovery cohort identified one CpG site (cg11625005) in which 78 (99%) of 79 samples from normal brain tissues and low-grade tumours were not hypermethylated, but 145 (72%) of 201 samples from malignant tumours were hypermethylated (〉15% methylated; p〈0.0001). Analysis of 68 samples in the validation cohort identified a subset of five CpG sites (henceforth, upstream of the transcription start site [UTSS]) that was hypermethylated in all malignant paediatric brain tumours that expressed TERT but not in normal tissues that did not express TERT (p〈0.0001). UTSS had a positive predictive value of 1.00 (95% CI 0.95-1.00) and a negative predictive value of 0.95 (0.87-0.99). In two paired samples of paediatric gliomas, UTSS methylation increased during transformation from low to high grade; it also increased in two paired samples that progressed from localised to metastatic disease. Two of eight atypical papillomas that had high UTSS methylation progressed to carcinomas, while the other six assessed did not progress or require additional treatment. 5-year overall survival was 51% (95% CI 31-71) for 25 patients with hypermethylated UTSS posterior fossa ependymomas and 95% (86-100) for 20 with non-hypermethylated tumours (p=0.0008). 5-year progression-free survival was 86% (68-100) for the 25 patients with non-hypermethylated UTSS tumours and 30% (10-50) for those with hypermethylated tumours (p=0.0008). INTERPRETATION: Hypermethylation of the UTSS region in the TERT promoter is associated with TERT expression in cancers. In paediatric brain tumours, UTSS hypermethylation is associated with tumour progression and poor prognosis. This region is easy to amplify, and the assay to establish hypermethylation can be done on most tissues in most clinical laboratories. Therefore the UTSS region is a potentially accessible biomarker for various cancers. FUNDING: The Canadian Institute of Health Research and the Terry Fox Foundation.
    Type of Publication: Journal article published
    PubMed ID: 23598174
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: COLORECTAL-CANCER ; ACUTE LYMPHOBLASTIC-LEUKEMIA ; STEM-CELLS ; medulloblastoma ; GLIOBLASTOMA ; GENE-EXPRESSION SIGNATURE ; DISTINCT SUBGROUPS ; ISLAND METHYLATOR PHENOTYPE ; DRIVER MUTATIONS ; GENOMIC COMPLEXITY
    Abstract: Ependymomas are common childhood brain tumours that occur throughout the nervous system, but are most common in the paediatric hindbrain. Current standard therapy comprises surgery and radiation, but not cytotoxic chemotherapy as it does not further increase survival. Whole-genome and whole-exome sequencing of 47 hindbrain ependymomas reveals an extremely low mutation rate, and zero significant recurrent somatic single nucleotide variants. Although devoid of recurrent single nucleotide variants and focal copy number aberrations, poor-prognosis hindbrain ependymomas exhibit a CpG island methylator phenotype. Transcriptional silencing driven by CpG methylation converges exclusively on targets of the Polycomb repressive complex 2 which represses expression of differentiation genes through trimethylation of H3K27. CpG island methylator phenotype-positive hindbrain ependymomas are responsive to clinical drugs that target either DNA or H3K27 methylation both in vitro and in vivo. We conclude that epigenetic modifiers are the first rational therapeutic candidates for this deadly malignancy, which is epigenetically deregulated but genetically bland.
    Type of Publication: Journal article published
    PubMed ID: 24553142
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-02-21
    Description: Ependymomas are common childhood brain tumours that occur throughout the nervous system, but are most common in the paediatric hindbrain. Current standard therapy comprises surgery and radiation, but not cytotoxic chemotherapy as it does not further increase survival. Whole-genome and whole-exome sequencing of 47 hindbrain ependymomas reveals an extremely low mutation rate, and zero significant recurrent somatic single nucleotide variants. Although devoid of recurrent single nucleotide variants and focal copy number aberrations, poor-prognosis hindbrain ependymomas exhibit a CpG island methylator phenotype. Transcriptional silencing driven by CpG methylation converges exclusively on targets of the Polycomb repressive complex 2 which represses expression of differentiation genes through trimethylation of H3K27. CpG island methylator phenotype-positive hindbrain ependymomas are responsive to clinical drugs that target either DNA or H3K27 methylation both in vitro and in vivo. We conclude that epigenetic modifiers are the first rational therapeutic candidates for this deadly malignancy, which is epigenetically deregulated but genetically bland.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4174313/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4174313/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mack, S C -- Witt, H -- Piro, R M -- Gu, L -- Zuyderduyn, S -- Stutz, A M -- Wang, X -- Gallo, M -- Garzia, L -- Zayne, K -- Zhang, X -- Ramaswamy, V -- Jager, N -- Jones, D T W -- Sill, M -- Pugh, T J -- Ryzhova, M -- Wani, K M -- Shih, D J H -- Head, R -- Remke, M -- Bailey, S D -- Zichner, T -- Faria, C C -- Barszczyk, M -- Stark, S -- Seker-Cin, H -- Hutter, S -- Johann, P -- Bender, S -- Hovestadt, V -- Tzaridis, T -- Dubuc, A M -- Northcott, P A -- Peacock, J -- Bertrand, K C -- Agnihotri, S -- Cavalli, F M G -- Clarke, I -- Nethery-Brokx, K -- Creasy, C L -- Verma, S K -- Koster, J -- Wu, X -- Yao, Y -- Milde, T -- Sin-Chan, P -- Zuccaro, J -- Lau, L -- Pereira, S -- Castelo-Branco, P -- Hirst, M -- Marra, M A -- Roberts, S S -- Fults, D -- Massimi, L -- Cho, Y J -- Van Meter, T -- Grajkowska, W -- Lach, B -- Kulozik, A E -- von Deimling, A -- Witt, O -- Scherer, S W -- Fan, X -- Muraszko, K M -- Kool, M -- Pomeroy, S L -- Gupta, N -- Phillips, J -- Huang, A -- Tabori, U -- Hawkins, C -- Malkin, D -- Kongkham, P N -- Weiss, W A -- Jabado, N -- Rutka, J T -- Bouffet, E -- Korbel, J O -- Lupien, M -- Aldape, K D -- Bader, G D -- Eils, R -- Lichter, P -- Dirks, P B -- Pfister, S M -- Korshunov, A -- Taylor, M D -- P30 CA016672/CA/NCI NIH HHS/ -- P50 CA097257/CA/NCI NIH HHS/ -- R01 CA121941/CA/NCI NIH HHS/ -- R01 CA148621/CA/NCI NIH HHS/ -- R01 CA163737/CA/NCI NIH HHS/ -- R01CA148699/CA/NCI NIH HHS/ -- R01CA159859/CA/NCI NIH HHS/ -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2014 Feb 27;506(7489):445-50. doi: 10.1038/nature13108. Epub 2014 Feb 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Developmental & Stem Cell Biology Program, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada [2] Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada [3] Division of Neurosurgery, University of Toronto, Toronto, Ontario M5S 1A8, Canada [4]. ; 1] Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany [2] Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg 69120, Germany [3] German Cancer Consortium (DKTK), Heidelberg 69120, Germany [4]. ; 1] German Cancer Consortium (DKTK), Heidelberg 69120, Germany [2] Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany. ; 1] German Cancer Consortium (DKTK), Heidelberg 69120, Germany [2] Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany. ; Department of Molecular Genetics, Banting and Best Department of Medical Research, The Donnelly Centre, University of Toronto, Toronto, Ontario M4N 1X8, Canada. ; 1] German Cancer Consortium (DKTK), Heidelberg 69120, Germany [2] Genome Biology, European Molecular Biology, Laboratory Meyerhofstr. 1, Heidelberg 69117, Germany. ; 1] Developmental & Stem Cell Biology Program, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada [2] Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; Developmental & Stem Cell Biology Program, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada. ; Department of Genetics, Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA. ; 1] Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany [2] German Cancer Consortium (DKTK), Heidelberg 69120, Germany. ; 1] German Cancer Consortium (DKTK), Heidelberg 69120, Germany [2] Division of Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany. ; Department of Neurology, Harvard Medical School, Children's Hospital Boston, MIT, Boston, Massachusetts 02115, USA. ; Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. ; 1] Ontario Cancer Institute, Princess Margaret Cancer Centre-University Health Network, Toronto, Ontario M5G 1L7, Canada [2] Ontario Institute for Cancer Research, Toronto, Ontario M5G 1L7, Canada. ; Cancer Epigenetics Discovery Performance Unit, GlaxoSmithKline Pharmaceuticals, Collegeville, Pennsylvania 19426, USA. ; Department of Oncogenomics, Academic Medical Center, Amsterdam 1105, The Netherlands. ; 1] Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg 69120, Germany [2] German Cancer Consortium (DKTK), Heidelberg 69120, Germany [3] CCU Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany. ; 1] Centre for High-Throughput Biology, Department of Microbiology & Immunology, University of British Columbia, Vancouver, V6T 1Z4 British Columbia, Canada [2] Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada. ; 1] Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada [2] Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada. ; Department of Pediatrics and National Capital Consortium, Uniformed Services University, Bethesda, Maryland 20814, USA. ; Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA. ; Pediatric Neurosurgery, Catholic University Medical School, Gemelli Hospital, Rome 00168, Italy. ; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA. ; Department of Pediatrics, Virginia Commonwealth, Richmond, Virginia 23298-0646, USA. ; Department of Pathology, University of Warsaw, Children's Memorial Health Institute University of Warsaw, Warsaw 04-730, Poland. ; Division of Anatomical Pathology, Department of Pathology and Molecular Medicine, McMaster University, Hamilton General Hospital, Hamilton, Ontario L8S 4K1, Canada. ; 1] Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg 69120, Germany [2] German Cancer Consortium (DKTK), Heidelberg 69120, Germany. ; 1] German Cancer Consortium (DKTK), Heidelberg 69120, Germany [2] Department of Neuropathology Ruprecht-Karls-University Heidelberg, Institute of Pathology, Heidelberg 69120, Germany. ; 1] University of Michigan Cell and Developmental Biology, Ann Arbor, Michigan 48109-2200, USA [2] Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA. ; Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA. ; Department of Neurosurgery, University of California San Francisco, San Francisco, California 94143-0112, USA. ; Departments of Neurology, Pediatrics, and Neurosurgery, University of California, San Francisco, The Helen Diller Family Cancer Research Building, San Francisco, California 94158, USA. ; 1] Developmental & Stem Cell Biology Program, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada [2] Department of Neuro-oncology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada. ; Department of Haematology and Oncology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada. ; 1] Developmental & Stem Cell Biology Program, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada [2] Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada [3] Division of Neurosurgery, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; Departments of Pediatrics and Human Genetics, McGill University and the McGill University Health Center Research Institute, Montreal, Quebec H3Z 2Z3, Canada. ; Department of Neuro-oncology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada. ; Genome Biology, European Molecular Biology, Laboratory Meyerhofstr. 1, Heidelberg 69117, Germany. ; 1] Ontario Cancer Institute, Princess Margaret Cancer Centre-University Health Network, Toronto, Ontario M5G 1L7, Canada [2] Ontario Institute for Cancer Research, Toronto, Ontario M5G 1L7, Canada [3] Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1X8, Canada. ; 1] Developmental & Stem Cell Biology Program, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada [2] Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada [3] Division of Neurosurgery, University of Toronto, Toronto, Ontario M5S 1A8, Canada [4] Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; 1] Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany [2] Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg 69120, Germany [3] German Cancer Consortium (DKTK), Heidelberg 69120, Germany. ; 1] German Cancer Consortium (DKTK), Heidelberg 69120, Germany [2] University of Michigan Cell and Developmental Biology, Ann Arbor, Michigan 48109-2200, USA [3] CCU Neuropathology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24553142" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain Neoplasms/drug therapy/genetics ; CpG Islands/*genetics ; DNA Methylation/drug effects ; Embryonic Stem Cells/metabolism ; Ependymoma/drug therapy/*genetics ; Epigenesis, Genetic/*genetics ; Epigenomics ; Female ; Gene Expression Regulation, Neoplastic ; Gene Silencing/drug effects ; Histones/drug effects/metabolism ; Humans ; Infant ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Mutation/genetics ; Phenotype ; Polycomb Repressive Complex 2/metabolism ; Prognosis ; Rhombencephalon/pathology ; Xenograft Model Antitumor Assays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...