Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The resonance fluorescence of neutral hydrogen illuminated by Hα radiation has been used as a technique for the spatially and temporally resolved density measurements of neutral hydrogen in high temperature plasmas, such as in the tokamak and magnetic mirror plasma fusion devices. The fluorescence signal, usually very weak and buried in the background of stray laser light and Hα emission, is very difficult to extract and its measurements are inaccurate. This paper discusses the improvement of the signal extraction using two optical path laser-induced fluorescence (LIF) methods. One optical path carries the fluorescence signal and the background (the stray laser light and Hα emission), whereas the other path carries only the background signal. By combining these two signals, a clean fluorescence signal can be isolated by subtracting out the background using a differential amplifier. The measurement is obtained instantaneously from these two signals which are taken simultaneously in one pulse rather than being extracted from two separate spectra taken in two sequential pulses (double pulses). This method, therefore, makes a significant improvement on the double pulse technique in terms of the accuracy of the measurement and the time resolution. Using this LIF technique the measurement of the neutral density profile in the exhaust of a tandem mirror plasma propulsion device is obtained and presented. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: For the purpose of measuring the plasma momentum flux in a plasma system, a highly sensitive and precision balance has been developed. It can measure a force, an impulse, or thrust as low as 0.1 mN free of mechanical noise, electrical and magnetic pickups. The double pendulum system consists of two parallel conducting plates. One or both of the plates can be suspended by needles. The needle suspended plate (or plates) can swing freely with negligible friction because of the sharp points of the needles. When one of the plates is impacted by an impulse it will swing relatively to the fixed plate or other movable plate. The capacitance between the plates changes as a result of such a motion. The change of capacitance as a function of time is recorded as an oscillating voltage signal. The amplitude of such a voltage signal is proportional to the impacting force or impulse. The proportional factor can be calibrated. The forces can thus be read out from the recorded value of the voltage. The equation of motion for the pendulum system has been solved analytically. The circuit equation for the electronic measurement system has been formulated and solved numerically. Using this balance the thrust at the exhaust of a Tandem Mirror plasma thruster has been measured. The analytical solution of the overall characteristics agrees greatly with the measurement. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...