Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: EXPRESSION ; SURVIVAL ; PATHWAY ; CLASSIFICATION ; DISEASE ; DISTINCT ; TUMORS ; IMPACT ; prognosis ; BIOMARKERS ; NERVOUS-SYSTEM ; C-MYC ; MYCN ; medulloblastoma ; CHILDHOOD MEDULLOBLASTOMA ; SUBGROUPS ; MYC ; STRATIFICATION ; Molecular subgroup
    Abstract: The MYC oncogenes are the most commonly amplified loci in medulloblastoma, and have previously been proposed as biomarkers of adverse disease prognosis by us and others. Here, we report focussed and comprehensive investigations of MYCC, MYCN and MYCL in an extensive medulloblastoma cohort (n = 292), aimed to define more precisely their biological significance and optimal clinical application to direct improved disease risk-stratification and individualisation of therapy. MYCC and MYCN expression elevations were multifactorial, associated with high-risk (gene amplification, large-cell/anaplastic pathology (LCA)) and favourable-risk (WNT/SHH molecular subgroups) disease features. Highly variable cellular gene amplification patterns underlay overall MYC copy number elevations observed in tumour biopsies; we used these alternative measures together to define quantitative methodologies and thresholds for amplification detection in routinely collected tumour material. MYCC and MYCN amplification, but not gain, each had independent prognostic significance in non-infants (〉/=3.0-16.0 years), but MYCC conferred a greater hazard to survival than MYCN when considered across this treatment group. MYCN's weaker group-wide survival relationship may be explained by its pleiotropic behaviour between clinical disease-risk groups; MYCN predicted poor prognosis in clinical high-risk (metastatic (M+) or LCA), but not standard-risk, patients. Extending these findings, survival decreased in proportion to the total number of independently significant high-risk features present (LCA, M+ or MYCC/MYCN amplification). This cumulative-risk model defines a patient group characterised by 〉/=2 independent risk-factors and an extremely poor prognosis (〈15% survival), which can be identified straightforwardly using the reported MYC amplification detection methodologies alongside clinical assessments, enabling targeting for novel/intensified therapies in future clinical studies.
    Type of Publication: Journal article published
    PubMed ID: 22139329
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: CANCER ; PATHWAY ; GENES ; ACTIVATION ; MUTATIONS ; SUBGROUPS ; LANDSCAPE ; TETRAPLOID TUMOR-CELLS ; TBR1
    Abstract: Medulloblastoma is an aggressively growing tumour, arising in the cerebellum or medulla/brain stem. It is the most common malignant brain tumour in children, and shows tremendous biological and clinical heterogeneity. Despite recent treatment advances, approximately 40% of children experience tumour recurrence, and 30% will die from their disease. Those who survive often have a significantly reduced quality of life. Four tumour subgroups with distinct clinical, biological and genetic profiles are currently identified. WNT tumours, showing activated wingless pathway signalling, carry a favourable prognosis under current treatment regimens. SHH tumours show hedgehog pathway activation, and have an intermediate prognosis. Group 3 and 4 tumours are molecularly less well characterized, and also present the greatest clinical challenges. The full repertoire of genetic events driving this distinction, however, remains unclear. Here we describe an integrative deep-sequencing analysis of 125 tumour-normal pairs, conducted as part of the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. Tetraploidy was identified as a frequent early event in Group 3 and 4 tumours, and a positive correlation between patient age and mutation rate was observed. Several recurrent mutations were identified, both in known medulloblastoma-related genes (CTNNB1, PTCH1, MLL2, SMARCA4) and in genes not previously linked to this tumour (DDX3X, CTDNEP1, KDM6A, TBR1), often in subgroup-specific patterns. RNA sequencing confirmed these alterations, and revealed the expression of what are, to our knowledge, the first medulloblastoma fusion genes identified. Chromatin modifiers were frequently altered across all subgroups. These findings enhance our understanding of the genomic complexity and heterogeneity underlying medulloblastoma, and provide several potential targets for new therapeutics, especially for Group 3 and 4 patients.
    Type of Publication: Journal article published
    PubMed ID: 22832583
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Abstract: TP53 mutations confer subgroup specific poor survival for children with medulloblastoma. We hypothesized that WNT activation which is associated with improved survival for such children abrogates TP53 related radioresistance and can be used to sensitize TP53 mutant tumors for radiation. We examined the subgroup-specific role of TP53 mutations in a cohort of 314 patients treated with radiation. TP53 wild-type or mutant human medulloblastoma cell-lines and normal neural stem cells were used to test radioresistance of TP53 mutations and the radiosensitizing effect of WNT activation on tumors and the developing brain. Children with WNT/TP53 mutant medulloblastoma had higher 5-year survival than those with SHH/TP53 mutant tumours (100% and 36.6%+/-8.7%, respectively (p〈0.001)). Introduction of TP53 mutation into medulloblastoma cells induced radioresistance (survival fractions at 2Gy (SF2) of 89%+/-2% vs. 57.4%+/-1.8% (p〈0.01)). In contrast, beta-catenin mutation sensitized TP53 mutant cells to radiation (p〈0.05). Lithium, an activator of the WNT pathway, sensitized TP53 mutant medulloblastoma to radiation (SF2 of 43.5%+/-1.5% in lithium treated cells vs. 56.6+/-3% (p〈0.01)) accompanied by increased number of gammaH2AX foci. Normal neural stem cells were protected from lithium induced radiation damage (SF2 of 33%+/-8% for lithium treated cells vs. 27%+/-3% for untreated controls (p=0.05). Poor survival of patients with TP53 mutant medulloblastoma may be related to radiation resistance. Since constitutive activation of the WNT pathway by lithium sensitizes TP53 mutant medulloblastoma cells and protect normal neural stem cells from radiation, this oral drug may represent an attractive novel therapy for high-risk medulloblastomas.
    Type of Publication: Journal article published
    PubMed ID: 25539912
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Abstract: The development of targeted anti-cancer therapies through the study of cancer genomes is intended to increase survival rates and decrease treatment-related toxicity. We treated a transposon-driven, functional genomic mouse model of medulloblastoma with 'humanized' in vivo therapy (microneurosurgical tumour resection followed by multi-fractionated, image-guided radiotherapy). Genetic events in recurrent murine medulloblastoma exhibit a very poor overlap with those in matched murine diagnostic samples (〈5%). Whole-genome sequencing of 33 pairs of human diagnostic and post-therapy medulloblastomas demonstrated substantial genetic divergence of the dominant clone after therapy (〈12% diagnostic events were retained at recurrence). In both mice and humans, the dominant clone at recurrence arose through clonal selection of a pre-existing minor clone present at diagnosis. Targeted therapy is unlikely to be effective in the absence of the target, therefore our results offer a simple, proximal, and remediable explanation for the failure of prior clinical trials of targeted therapy.
    Type of Publication: Journal article published
    PubMed ID: 26760213
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: DISEASE ; DISTINCT ; prognosis ; meta-analysis ; WNT ; ADULT ; medulloblastoma ; SUBTYPES ; PROFILES ; CONSENSUS ; CHILDHOOD MEDULLOBLASTOMA ; SUBGROUPS ; STRATIFICATION ; BETA-CATENIN STATUS ; PEDIATRIC MEDULLOBLASTOMAS ; SHH ; Group 3 ; Group 4 ; Pediatric brain tumor
    Abstract: Medulloblastoma is the most common malignant brain tumor in childhood. Molecular studies from several groups around the world demonstrated that medulloblastoma is not one disease but comprises a collection of distinct molecular subgroups. However, all these studies reported on different numbers of subgroups. The current consensus is that there are only four core subgroups, which should be termed WNT, SHH, Group 3 and Group 4. Based on this, we performed a meta-analysis of all molecular and clinical data of 550 medulloblastomas brought together from seven independent studies. All cases were analyzed by gene expression profiling and for most cases SNP or array-CGH data were available. Data are presented for all medulloblastomas together and for each subgroup separately. For validation purposes, we compared the results of this meta-analysis with another large medulloblastoma cohort (n = 402) for which subgroup information was obtained by immunohistochemistry. Results from both cohorts are highly similar and show how distinct the molecular subtypes are with respect to their transcriptome, DNA copy-number aberrations, demographics, and survival. Results from these analyses will form the basis for prospective multi-center studies and will have an impact on how the different subgroups of medulloblastoma will be treated in the future.
    Type of Publication: Journal article published
    PubMed ID: 22358457
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: HIGH-DOSE CHEMOTHERAPY ; ADJUVANT CHEMOTHERAPY ; CHILDHOOD MEDULLOBLASTOMA ; PEDIATRIC-ONCOLOGY-GROUP ; outcome prediction ; CHILDRENS CANCER GROUP ; BETA-CATENIN STATUS ; CRANIOSPINAL RADIATION-THERAPY ; STEM-CELL RESCUE ; RISK MEDULLOBLASTOMA
    Abstract: Medulloblastoma is curable in approximately 70 % of patients. Over the past decade, progress in improving survival using conventional therapies has stalled, resulting in reduced quality of life due to treatment-related side effects, which are a major concern in survivors. The vast amount of genomic and molecular data generated over the last 5-10 years encourages optimism that improved risk stratification and new molecular targets will improve outcomes. It is now clear that medulloblastoma is not a single-disease entity, but instead consists of at least four distinct molecular subgroups: WNT/Wingless, Sonic Hedgehog, Group 3, and Group 4. The Medulloblastoma Down Under 2013 meeting, which convened at Bunker Bay, Australia, brought together 50 leading clinicians and scientists. The 2-day agenda included focused sessions on pathology and molecular stratification, genomics and mouse models, high-throughput drug screening, and clinical trial design. The meeting established a global action plan to translate novel biologic insights and drug targeting into treatment regimens to improve outcomes. A consensus was reached in several key areas, with the most important being that a novel classification scheme for medulloblastoma based on the four molecular subgroups, as well as histopathologic features, should be presented for consideration in the upcoming fifth edition of the World Health Organization's classification of tumours of the central nervous system. Three other notable areas of agreement were as follows: (1) to establish a central repository of annotated mouse models that are readily accessible and freely available to the international research community; (2) to institute common eligibility criteria between the Children's Oncology Group and the International Society of Paediatric Oncology Europe and initiate joint or parallel clinical trials; (3) to share preliminary high-throughput screening data across discovery labs to hasten the development of novel therapeutics. Medulloblastoma Down Under 2013 was an effective forum for meaningful discussion, which resulted in enhancing international collaborative clinical and translational research of this rare disease. This template could be applied to other fields to devise global action plans addressing all aspects of a disease, from improved disease classification, treatment stratification, and drug targeting to superior treatment regimens to be assessed in cooperative international clinical trials.
    Type of Publication: Journal article published
    PubMed ID: 24264598
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Abstract: PURPOSE: Reports detailing the prognostic impact of TP53 mutations in medulloblastoma offer conflicting conclusions. We resolve this issue through the inclusion of molecular subgroup profiles. PATIENTS AND METHODS: We determined subgroup affiliation, TP53 mutation status, and clinical outcome in a discovery cohort of 397 medulloblastomas. We subsequently validated our results on an independent cohort of 156 medulloblastomas. RESULTS: TP53 mutations are enriched in wingless (WNT; 16%) and sonic hedgehog (SHH; 21%) medulloblastomas and are virtually absent in subgroups 3 and 4 tumors (P 〈 .001). Patients with SHH/TP53 mutant tumors are almost exclusively between ages 5 and 18 years, dramatically different from the general SHH distribution (P 〈 .001). Children with SHH/TP53 mutant tumors harbor 56% germline TP53 mutations, which are not observed in children with WNT/TP53 mutant tumors. Five-year overall survival (OS; +/- SE) was 41% +/- 9% and 81% +/- 5% for patients with SHH medulloblastomas with and without TP53 mutations, respectively (P 〈 .001). Furthermore, TP53 mutations accounted for 72% of deaths in children older than 5 years with SHH medulloblastomas. In contrast, 5-year OS rates were 90% +/- 9% and 97% +/- 3% for patients with WNT tumors with and without TP53 mutations (P = .21). Multivariate analysis revealed that TP53 status was the most important risk factor for SHH medulloblastoma. Survival rates in the validation cohort mimicked the discovery results, revealing that poor survival of TP53 mutations is restricted to patients with SHH medulloblastomas (P = .012) and not WNT tumors. CONCLUSION: Subgroup-specific analysis reconciles prior conflicting publications and confirms that TP53 mutations are enriched among SHH medulloblastomas, in which they portend poor outcome and account for a large proportion of treatment failures in these patients.
    Type of Publication: Journal article published
    PubMed ID: 23835706
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Abstract: Molecular subclassification is rapidly informing the clinical management of medulloblastoma. However, the disease remains associated with poor outcomes and therapy-associated late effects, and the majority of patients are not characterized by a validated prognostic biomarker. Here, we investigated the potential of epigenetic DNA methylation for disease subclassification, particularly in formalin-fixed biopsies, and to identify biomarkers for improved therapeutic individualization. Tumor DNA methylation profiles were assessed, alongside molecular and clinical disease features, in 230 patients primarily from the SIOP-UKCCSG PNET3 clinical trial. We demonstrate by cross-validation in frozen training and formalin-fixed test sets that medulloblastoma comprises four robust DNA methylation subgroups (termed WNT, SHH, G3 and G4), highly related to their transcriptomic counterparts, and which display distinct molecular, clinical and pathological disease characteristics. WNT patients displayed an expected favorable prognosis, while outcomes for SHH, G3 and G4 were equivalent in our cohort. MXI1 and IL8 methylation were identified as novel independent high-risk biomarkers in cross-validated survival models of non-WNT patients, and were validated using non-array methods. Incorporation of MXI1 and IL8 into current survival models significantly improved the assignment of disease risk; 46 % of patients could be classified as 'favorable risk' (〉90 % survival) compared to 13 % using current models, while the high-risk group was reduced from 30 to 16 %. DNA methylation profiling enables the robust subclassification of four disease subgroups in frozen and routinely collected/archival formalin-fixed biopsy material, and the incorporation of DNA methylation biomarkers can significantly improve disease-risk stratification. These findings have important implications for future risk-adapted clinical disease management.
    Type of Publication: Journal article published
    PubMed ID: 23291781
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: POOR-PROGNOSIS ; BRAIN-TUMORS ; CHILDHOOD MEDULLOBLASTOMA ; RISK STRATIFICATION ; outcome prediction ; TP53 MUTATIONS ; PATHWAY ACTIVATION ; MOLECULAR SUBGROUPS ; NEUROTROPHIN RECEPTOR TRKC ; MYCN AMPLIFICATION
    Abstract: Purpose Medulloblastoma comprises four distinct molecular subgroups: WNT, SHH, Group 3, and Group 4. Current medulloblastoma protocols stratify patients based on clinical features: patient age, metastatic stage, extent of resection, and histologic variant. Stark prognostic and genetic differences among the four subgroups suggest that subgroup-specific molecular biomarkers could improve patient prognostication. Patients and Methods Molecular biomarkers were identified from a discovery set of 673 medulloblastomas from 43 cities around the world. Combined risk stratification models were designed based on clinical and cytogenetic biomarkers identified by multivariable Cox proportional hazards analyses. Identified biomarkers were tested using fluorescent in situ hybridization (FISH) on a nonoverlapping medulloblastoma tissue microarray (n = 453), with subsequent validation of the risk stratification models. Results Subgroup information improves the predictive accuracy of a multivariable survival model compared with clinical biomarkers alone. Most previously published cytogenetic biomarkers are only prognostic within a single medulloblastoma subgroup. Profiling six FISH biomarkers (GLI2, MYC, chromosome 11 [chr11], chr14, 17p, and 17q) on formalin-fixed paraffin-embedded tissues, we can reliably and reproducibly identify very low-risk and very high-risk patients within SHH, Group 3, and Group 4 medulloblastomas. Conclusion Combining subgroup and cytogenetic biomarkers with established clinical biomarkers substantially improves patient prognostication, even in the context of heterogeneous clinical therapies. The prognostic significance of most molecular biomarkers is restricted to a specific subgroup. We have identified a small panel of cytogenetic biomarkers that reliably identifies very high-risk and very low-risk groups of patients, making it an excellent tool for selecting patients for therapy intensification and therapy de-escalation in future clinical trials.
    Type of Publication: Journal article published
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...