Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Abstract: Retroviral gene marking has been used successfully in preclinical and clinical transplantation settings. Highly sensitive techniques for vector insertion-site determination, such as linear amplification-mediated polymerase chain reaction (PCR) in conjunction with next-generation sequencing, have been introduced to assess the composition of gene-marked hematopoiesis at a single-cell level. Here we used these novel techniques for directly comparing clonal reconstitution kinetics in mice transplanted with bone-marrow-derived stem cells genetically marked with either a standard, spleen focus-forming virus long terminal repeat-driven gamma-retroviral, or a lentiviral self-inactivating vector containing an identical but internal spleen focus-forming virus-derived enhancer/promoter. We observed that the use of the lentiviral self-inactivating vector for gene marking was associated with a broader repertoire of differently marked hematopoietic clones. More importantly, we found a significantly higher probability of insertions in growth-promoting, clonal-dominance-associated genes in the spleen focus-forming virus-long terminal repeat-driven gamma-retroviral vector at later time points of analysis. Based on our data, we suggest that the combined use of linear amplification-mediated PCR and next-generation sequencing represents a potent tool for the analysis of clonal reconstitution kinetics in the context of gene marking with integrated vectors. At the same time, our findings prove that the use of multiple restriction enzymes for linear amplification-mediated PCR is indispensable to detect most or ideally all individual stem cell clones contributing to hematopoiesis. We have also found that techniques such as quantitative PCR can be helpful to retrospectively analyze reconstitution kinetics for individual hematopoietic stem cell clones. Finally, our results confirm the notion that marking with lentiviral self-inactivating vectors is associated with a lower risk of genotoxicity as compared with gamma-retroviral long terminal repeat vectors.
    Type of Publication: Journal article published
    PubMed ID: 22989760
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-08-02
    Description: Targeting of soluble lysosomal enzymes requires mannose 6-phosphate (M6P) signals whose formation is initiated by the hexameric N-acetylglucosamine (GlcNAc)-1-phosphotransferase complex (α 2 β 2 2 ). Upon proteolytic cleavage by site-1 protease, the α/β-subunit precursor is catalytically activated but the functions of -subunits (Gnptg) in M6P modification of lysosomal enzymes are unknown. To investigate this, we analyzed the Gnptg expression in mouse tissues, primary cultured cells, and in Gnptg reporter mice in vivo , and found high amounts in the brain, eye, kidney, femur, vertebra and fibroblasts. Consecutively we performed comprehensive quantitative lysosomal proteome and M6P secretome analysis in fibroblasts of wild-type and Gnptg ko mice mimicking the lysosomal storage disorder mucolipidosis III. Although the cleavage of the α/β-precursor was not affected by Gnptg deficiency, the GlcNAc-1-phosphotransferase activity was significantly reduced. We purified lysosomes and identified 29 soluble lysosomal proteins by SILAC-based mass spectrometry exhibiting differential abundance in Gnptg ko fibroblasts which was confirmed by Western blotting and enzymatic activity analysis for selected proteins. A subset of these lysosomal enzymes show also reduced M6P modifications, fail to reach lysosomes and are secreted, among them α- l -fucosidase and arylsulfatase B. Low levels of these enzymes correlate with the accumulation of non-degraded fucose-containing glycostructures and sulfated glycosaminoglycans in Gnptg ko lysosomes. Incubation of Gnptg ko fibroblasts with arylsulfatase B partially rescued glycosaminoglycan storage. Combinatorial treatments with other here identified missorted enzymes of this degradation pathway might further correct glycosaminoglycan accumulation and will provide a useful basis to reveal mechanisms of selective, Gnptg-dependent formation of M6P residues on lysosomal proteins.
    Print ISSN: 1535-9476
    Electronic ISSN: 1535-9484
    Topics: Biology , Medicine
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...