Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Unknown
    Hoboken, N.J : BiblioBytes
    Keywords: Agriculture, Early works to 1800.
    ISBN: 0-585-04881-9
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Unknown
    Hoboken, N.J : BiblioBytes
    Keywords: Death, Poetry. ; Drinking in literature. ; Lyre, Poetry. ; Sailors, Poetry. ; English poetry., lcsh
    ISBN: 0-585-05283-2
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Life sciences ; History ; Ecology ; Semantics ; Life sciences ; Ecology ; Semantics ; History of Science ; Springer eBooks
    Description / Table of Contents: Language, linguistics - life, biosemioticś€Œ- On biosemiotics and its possible relevance to linguistic -- Language and biosphere: Blurry contours as a condition of semiosis -- Language as primary modeling and natural languages: A biosemiotic perspective -- Umwelt and language -- Verbal patterns: Taming cognitive biology -- Biolinguistics and biosemiotics -- Biology, linguistics, and the semiotic perspective on language -- Before Babel: The evolutionary roots of human language -- ℗ Biosemiotics, politics and Th.A.℗ Sebeoḱ€™s move from linguistics to semiotics -- How useful is ©♭tat de langue for biosemiotics? An exploration of linguistic consciousness and evolution in F. de Saussur這s works -- Darwiń€™s Ethology and the expression of the emotions: Biosemiotics as a historical science -- Darwiń€™s biosemiotics: The linguistic Rubicon in the Descent of Man -- The Bakhtinian dialogue revisited: A (non-biosemiotic) view from historiography and epistemology of humanities
    Abstract: Without biosemiosis, there could be no human language. The volume presents international perspectives that have been inspired by this simple idea. The contributors open up new methods, directions and perspectives on both language in general and specific human languages. Many commonplace notions (language, dialect, syntax, sign, text, dialogue, discourse, etc.) have to be rethought once due attention is given to the living roots of languages. Accordingly, the contributors unite €œéternaĺ€ problems of the humanities (such as language and thought, origin of language, prelinguistic meaning-making, borders of human language and ́€œmarginaĺ€ linguistic phenomena) with new inspirations drawing from natural science. They do so with respect to issues such as: how biolinguistics relates to biosemiotics, the history and value of general linguistic and (bio)semiotic models, and how empirical work can link the study of language with biosemiotic phenomena. The volume thus begins to unify perspectives on language(s) and living systems. Biosemiotics connects the sciences with the humanities while offering a new challenge to autonomous linguistics by pointing towards new kinds of interdisciplinary fusion
    Pages: VI, 295 p. 20 illus., 4 illus. in color. : online resource.
    Edition: 1st ed. 2015.
    ISBN: 9783319206639
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-04-23
    Description: Although there are substantial differences between the magnetospheres of Jupiter and Saturn, it has been suggested that cryovolcanic activity at Enceladus could lead to electrodynamic coupling between Enceladus and Saturn like that which links Jupiter with Io, Europa and Ganymede. Powerful field-aligned electron beams associated with the Io-Jupiter coupling, for example, create an auroral footprint in Jupiter's ionosphere. Auroral ultraviolet emission associated with Enceladus-Saturn coupling is anticipated to be just a few tenths of a kilorayleigh (ref. 12), about an order of magnitude dimmer than Io's footprint and below the observable threshold, consistent with its non-detection. Here we report the detection of magnetic-field-aligned ion and electron beams (offset several moon radii downstream from Enceladus) with sufficient power to stimulate detectable aurora, and the subsequent discovery of Enceladus-associated aurora in a few per cent of the scans of the moon's footprint. The footprint varies in emission magnitude more than can plausibly be explained by changes in magnetospheric parameters--and as such is probably indicative of variable plume activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pryor, Wayne R -- Rymer, Abigail M -- Mitchell, Donald G -- Hill, Thomas W -- Young, David T -- Saur, Joachim -- Jones, Geraint H -- Jacobsen, Sven -- Cowley, Stan W H -- Mauk, Barry H -- Coates, Andrew J -- Gustin, Jacques -- Grodent, Denis -- Gerard, Jean-Claude -- Lamy, Laurent -- Nichols, Jonathan D -- Krimigis, Stamatios M -- Esposito, Larry W -- Dougherty, Michele K -- Jouchoux, Alain J -- Stewart, A Ian F -- McClintock, William E -- Holsclaw, Gregory M -- Ajello, Joseph M -- Colwell, Joshua E -- Hendrix, Amanda R -- Crary, Frank J -- Clarke, John T -- Zhou, Xiaoyan -- England -- Nature. 2011 Apr 21;472(7343):331-3. doi: 10.1038/nature09928.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Science Department, Central Arizona College, Coolidge, Arizona 85128, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21512570" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-02-03
    Description: Transcription factors and chromatin modifiers are important in the programming and reprogramming of cellular states during development. Transcription factors bind to enhancer elements and recruit coactivators and chromatin-modifying enzymes to facilitate transcription initiation. During differentiation a subset of these enhancers must be silenced, but the mechanisms underlying enhancer silencing are poorly understood. Here we show that the histone demethylase lysine-specific demethylase 1 (LSD1; ref. 5), which demethylates histone H3 on Lys 4 or Lys 9 (H3K4/K9), is essential in decommissioning enhancers during the differentiation of mouse embryonic stem cells (ESCs). LSD1 occupies enhancers of active genes that are critical for control of the state of ESCs. However, LSD1 is not essential for the maintenance of ESC identity. Instead, ESCs lacking LSD1 activity fail to differentiate fully, and ESC-specific enhancers fail to undergo the histone demethylation events associated with differentiation. At active enhancers, LSD1 is a component of the NuRD (nucleosome remodelling and histone deacetylase) complex, which contains additional subunits that are necessary for ESC differentiation. We propose that the LSD1-NuRD complex decommissions enhancers of the pluripotency program during differentiation, which is essential for the complete shutdown of the ESC gene expression program and the transition to new cell states.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4144424/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4144424/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Whyte, Warren A -- Bilodeau, Steve -- Orlando, David A -- Hoke, Heather A -- Frampton, Garrett M -- Foster, Charles T -- Cowley, Shaun M -- Young, Richard A -- G0600135/Medical Research Council/United Kingdom -- HG002668/HG/NHGRI NIH HHS/ -- NS055923/NS/NINDS NIH HHS/ -- P01 NS055923/NS/NINDS NIH HHS/ -- R01 HG002668/HG/NHGRI NIH HHS/ -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2012 Feb 1;482(7384):221-5. doi: 10.1038/nature10805.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22297846" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation/*genetics ; Embryonic Stem Cells/*cytology/*metabolism ; Enhancer Elements, Genetic/*genetics ; Fibroblasts ; *Gene Silencing ; Histone Demethylases ; Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism ; Mice ; Oxidoreductases, N-Demethylating/antagonists & inhibitors/*metabolism ; Promoter Regions, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-10-30
    Description: Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3530898/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3530898/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Biankin, Andrew V -- Waddell, Nicola -- Kassahn, Karin S -- Gingras, Marie-Claude -- Muthuswamy, Lakshmi B -- Johns, Amber L -- Miller, David K -- Wilson, Peter J -- Patch, Ann-Marie -- Wu, Jianmin -- Chang, David K -- Cowley, Mark J -- Gardiner, Brooke B -- Song, Sarah -- Harliwong, Ivon -- Idrisoglu, Senel -- Nourse, Craig -- Nourbakhsh, Ehsan -- Manning, Suzanne -- Wani, Shivangi -- Gongora, Milena -- Pajic, Marina -- Scarlett, Christopher J -- Gill, Anthony J -- Pinho, Andreia V -- Rooman, Ilse -- Anderson, Matthew -- Holmes, Oliver -- Leonard, Conrad -- Taylor, Darrin -- Wood, Scott -- Xu, Qinying -- Nones, Katia -- Fink, J Lynn -- Christ, Angelika -- Bruxner, Tim -- Cloonan, Nicole -- Kolle, Gabriel -- Newell, Felicity -- Pinese, Mark -- Mead, R Scott -- Humphris, Jeremy L -- Kaplan, Warren -- Jones, Marc D -- Colvin, Emily K -- Nagrial, Adnan M -- Humphrey, Emily S -- Chou, Angela -- Chin, Venessa T -- Chantrill, Lorraine A -- Mawson, Amanda -- Samra, Jaswinder S -- Kench, James G -- Lovell, Jessica A -- Daly, Roger J -- Merrett, Neil D -- Toon, Christopher -- Epari, Krishna -- Nguyen, Nam Q -- Barbour, Andrew -- Zeps, Nikolajs -- Australian Pancreatic Cancer Genome Initiative -- Kakkar, Nipun -- Zhao, Fengmei -- Wu, Yuan Qing -- Wang, Min -- Muzny, Donna M -- Fisher, William E -- Brunicardi, F Charles -- Hodges, Sally E -- Reid, Jeffrey G -- Drummond, Jennifer -- Chang, Kyle -- Han, Yi -- Lewis, Lora R -- Dinh, Huyen -- Buhay, Christian J -- Beck, Timothy -- Timms, Lee -- Sam, Michelle -- Begley, Kimberly -- Brown, Andrew -- Pai, Deepa -- Panchal, Ami -- Buchner, Nicholas -- De Borja, Richard -- Denroche, Robert E -- Yung, Christina K -- Serra, Stefano -- Onetto, Nicole -- Mukhopadhyay, Debabrata -- Tsao, Ming-Sound -- Shaw, Patricia A -- Petersen, Gloria M -- Gallinger, Steven -- Hruban, Ralph H -- Maitra, Anirban -- Iacobuzio-Donahue, Christine A -- Schulick, Richard D -- Wolfgang, Christopher L -- Morgan, Richard A -- Lawlor, Rita T -- Capelli, Paola -- Corbo, Vincenzo -- Scardoni, Maria -- Tortora, Giampaolo -- Tempero, Margaret A -- Mann, Karen M -- Jenkins, Nancy A -- Perez-Mancera, Pedro A -- Adams, David J -- Largaespada, David A -- Wessels, Lodewyk F A -- Rust, Alistair G -- Stein, Lincoln D -- Tuveson, David A -- Copeland, Neal G -- Musgrove, Elizabeth A -- Scarpa, Aldo -- Eshleman, James R -- Hudson, Thomas J -- Sutherland, Robert L -- Wheeler, David A -- Pearson, John V -- McPherson, John D -- Gibbs, Richard A -- Grimmond, Sean M -- 13031/Cancer Research UK/United Kingdom -- 2P50CA101955/CA/NCI NIH HHS/ -- P01CA134292/CA/NCI NIH HHS/ -- P50 CA101955/CA/NCI NIH HHS/ -- P50 CA102701/CA/NCI NIH HHS/ -- P50CA062924/CA/NCI NIH HHS/ -- R01 CA097075/CA/NCI NIH HHS/ -- R01 CA97075/CA/NCI NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- Cancer Research UK/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2012 Nov 15;491(7424):399-405. doi: 10.1038/nature11547. Epub 2012 Oct 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Kinghorn Cancer Centre, 370 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23103869" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*metabolism ; Carcinoma, Pancreatic Ductal/*genetics/*pathology ; Gene Dosage ; Gene Expression Regulation, Neoplastic ; Genome/*genetics ; Humans ; Kaplan-Meier Estimate ; Mice ; Mutation ; Pancreatic Neoplasms/*genetics/*pathology ; Proteins/genetics ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-01-31
    Description: Recent clinical trials showed that targeting of inhibitory receptors on T cells induces durable responses in a subset of cancer patients, despite advanced disease. However, the regulatory switches controlling T-cell function in immunosuppressive tumours are not well understood. Here we show that such inhibitory mechanisms can be systematically discovered in the tumour microenvironment. We devised an in vivo pooled short hairpin RNA (shRNA) screen in which shRNAs targeting negative regulators became highly enriched in murine tumours by releasing a block on T-cell proliferation upon tumour antigen recognition. Such shRNAs were identified by deep sequencing of the shRNA cassette from T cells infiltrating tumour or control tissues. One of the target genes was Ppp2r2d, a regulatory subunit of the PP2A phosphatase family. In tumours, Ppp2r2d knockdown inhibited T-cell apoptosis and enhanced T-cell proliferation as well as cytokine production. Key regulators of immune function can therefore be discovered in relevant tissue microenvironments.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4052214/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4052214/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Penghui -- Shaffer, Donald R -- Alvarez Arias, Diana A -- Nakazaki, Yukoh -- Pos, Wouter -- Torres, Alexis J -- Cremasco, Viviana -- Dougan, Stephanie K -- Cowley, Glenn S -- Elpek, Kutlu -- Brogdon, Jennifer -- Lamb, John -- Turley, Shannon J -- Ploegh, Hidde L -- Root, David E -- Love, J Christopher -- Dranoff, Glenn -- Hacohen, Nir -- Cantor, Harvey -- Wucherpfennig, Kai W -- 1R01CA173750/CA/NCI NIH HHS/ -- DP3 DK097681/DK/NIDDK NIH HHS/ -- P01 AI045757/AI/NIAID NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- P30-CA14051/CA/NCI NIH HHS/ -- R01 CA173750/CA/NCI NIH HHS/ -- T32 AI007386/AI/NIAID NIH HHS/ -- T32 AI07386/AI/NIAID NIH HHS/ -- England -- Nature. 2014 Feb 6;506(7486):52-7. doi: 10.1038/nature12988. Epub 2014 Jan 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA [2]. ; 1] Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA [2] [3] Jounce Therapeutics, Cambridge, Massachusetts 02138, USA. ; Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA. ; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA. ; Whitehead Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA. ; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; 1] Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA [2] Jounce Therapeutics, Cambridge, Massachusetts 02138, USA. ; Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, USA. ; Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24476824" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Neoplasm/immunology ; Apoptosis/immunology ; CD4-Positive T-Lymphocytes/immunology ; CD8-Positive T-Lymphocytes/cytology/immunology/secretion ; Cell Proliferation ; Cytokines/immunology/secretion ; Female ; Gene Knockdown Techniques ; High-Throughput Nucleotide Sequencing ; *Immunotherapy/methods ; Lymphocytes, Tumor-Infiltrating/cytology/immunology/metabolism/secretion ; Melanoma, Experimental/immunology ; Mice ; Mice, Inbred C57BL ; *Molecular Targeted Therapy ; Protein Phosphatase 2/deficiency/genetics/*metabolism ; RNA, Small Interfering/genetics ; Reproducibility of Results ; Tumor Microenvironment/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-02-25
    Description: Hypothalamic pro-opiomelanocortin (POMC) neurons promote satiety. Cannabinoid receptor 1 (CB1R) is critical for the central regulation of food intake. Here we test whether CB1R-controlled feeding in sated mice is paralleled by decreased activity of POMC neurons. We show that chemical promotion of CB1R activity increases feeding, and notably, CB1R activation also promotes neuronal activity of POMC cells. This paradoxical increase in POMC activity was crucial for CB1R-induced feeding, because designer-receptors-exclusively-activated-by-designer-drugs (DREADD)-mediated inhibition of POMC neurons diminishes, whereas DREADD-mediated activation of POMC neurons enhances CB1R-driven feeding. The Pomc gene encodes both the anorexigenic peptide alpha-melanocyte-stimulating hormone, and the opioid peptide beta-endorphin. CB1R activation selectively increases beta-endorphin but not alpha-melanocyte-stimulating hormone release in the hypothalamus, and systemic or hypothalamic administration of the opioid receptor antagonist naloxone blocks acute CB1R-induced feeding. These processes involve mitochondrial adaptations that, when blocked, abolish CB1R-induced cellular responses and feeding. Together, these results uncover a previously unsuspected role of POMC neurons in the promotion of feeding by cannabinoids.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4496586/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4496586/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koch, Marco -- Varela, Luis -- Kim, Jae Geun -- Kim, Jung Dae -- Hernandez-Nuno, Francisco -- Simonds, Stephanie E -- Castorena, Carlos M -- Vianna, Claudia R -- Elmquist, Joel K -- Morozov, Yury M -- Rakic, Pasko -- Bechmann, Ingo -- Cowley, Michael A -- Szigeti-Buck, Klara -- Dietrich, Marcelo O -- Gao, Xiao-Bing -- Diano, Sabrina -- Horvath, Tamas L -- DP1 DK098058/DK/NIDDK NIH HHS/ -- DP1DK098058/DK/NIDDK NIH HHS/ -- P01 NS062686/NS/NINDS NIH HHS/ -- R01 AG040236/AG/NIA NIH HHS/ -- R01 DA023999/DA/NIDA NIH HHS/ -- R01AG040236/AG/NIA NIH HHS/ -- R01DK097566/DK/NIDDK NIH HHS/ -- R37 DK053301/DK/NIDDK NIH HHS/ -- England -- Nature. 2015 Mar 5;519(7541):45-50. doi: 10.1038/nature14260. Epub 2015 Feb 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA [2] Institute of Anatomy, University of Leipzig, 04103 Leipzig, Germany. ; Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA. ; 1] Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA [2] Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520, USA. ; Obesity &Diabetes Institute, Department of Physiology, Monash University, Clayton, Victoria 3800, Australia. ; Division of Endocrinology &Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA. ; 1] Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA [2] Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520, USA. ; Institute of Anatomy, University of Leipzig, 04103 Leipzig, Germany. ; 1] Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA [2] Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA. ; 1] Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA [2] Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520, USA [3] Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA. ; 1] Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA [2] Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520, USA [3] Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA [4] Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25707796" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cannabinoids/*pharmacology ; Eating/*drug effects/*physiology ; Energy Metabolism/drug effects ; Hypothalamus/*cytology/drug effects/physiology ; Ion Channels/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mitochondria/drug effects/metabolism ; Mitochondrial Proteins/metabolism ; Naloxone/pharmacology ; Neurons/*drug effects/*metabolism ; Pro-Opiomelanocortin/*metabolism ; Receptor, Cannabinoid, CB1/agonists/metabolism ; Satiety Response/drug effects/physiology ; alpha-MSH/secretion ; beta-Endorphin/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-02-27
    Description: Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523082/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523082/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Waddell, Nicola -- Pajic, Marina -- Patch, Ann-Marie -- Chang, David K -- Kassahn, Karin S -- Bailey, Peter -- Johns, Amber L -- Miller, David -- Nones, Katia -- Quek, Kelly -- Quinn, Michael C J -- Robertson, Alan J -- Fadlullah, Muhammad Z H -- Bruxner, Tim J C -- Christ, Angelika N -- Harliwong, Ivon -- Idrisoglu, Senel -- Manning, Suzanne -- Nourse, Craig -- Nourbakhsh, Ehsan -- Wani, Shivangi -- Wilson, Peter J -- Markham, Emma -- Cloonan, Nicole -- Anderson, Matthew J -- Fink, J Lynn -- Holmes, Oliver -- Kazakoff, Stephen H -- Leonard, Conrad -- Newell, Felicity -- Poudel, Barsha -- Song, Sarah -- Taylor, Darrin -- Waddell, Nick -- Wood, Scott -- Xu, Qinying -- Wu, Jianmin -- Pinese, Mark -- Cowley, Mark J -- Lee, Hong C -- Jones, Marc D -- Nagrial, Adnan M -- Humphris, Jeremy -- Chantrill, Lorraine A -- Chin, Venessa -- Steinmann, Angela M -- Mawson, Amanda -- Humphrey, Emily S -- Colvin, Emily K -- Chou, Angela -- Scarlett, Christopher J -- Pinho, Andreia V -- Giry-Laterriere, Marc -- Rooman, Ilse -- Samra, Jaswinder S -- Kench, James G -- Pettitt, Jessica A -- Merrett, Neil D -- Toon, Christopher -- Epari, Krishna -- Nguyen, Nam Q -- Barbour, Andrew -- Zeps, Nikolajs -- Jamieson, Nigel B -- Graham, Janet S -- Niclou, Simone P -- Bjerkvig, Rolf -- Grutzmann, Robert -- Aust, Daniela -- Hruban, Ralph H -- Maitra, Anirban -- Iacobuzio-Donahue, Christine A -- Wolfgang, Christopher L -- Morgan, Richard A -- Lawlor, Rita T -- Corbo, Vincenzo -- Bassi, Claudio -- Falconi, Massimo -- Zamboni, Giuseppe -- Tortora, Giampaolo -- Tempero, Margaret A -- Australian Pancreatic Cancer Genome Initiative -- Gill, Anthony J -- Eshleman, James R -- Pilarsky, Christian -- Scarpa, Aldo -- Musgrove, Elizabeth A -- Pearson, John V -- Biankin, Andrew V -- Grimmond, Sean M -- 103721/Wellcome Trust/United Kingdom -- C29717/A17263/Cancer Research UK/United Kingdom -- C596/A18076/Cancer Research UK/United Kingdom -- P30 CA006973/CA/NCI NIH HHS/ -- P30 CA016672/CA/NCI NIH HHS/ -- P50 CA062924/CA/NCI NIH HHS/ -- P50 CA62924/CA/NCI NIH HHS/ -- England -- Nature. 2015 Feb 26;518(7540):495-501. doi: 10.1038/nature14169.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia [2] QIMR Berghofer Medical Research Institute, Herston Road, Brisbane 4006, Australia. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2010, Australia. ; Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia [3] South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales 2170, Australia [4] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK. ; 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia [2] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK. ; The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] Department of Anatomical Pathology, St Vincent's Hospital, Sydney, New South Wales 2010, Australia. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] School of Environmental &Life Sciences, University of Newcastle, Ourimbah, New South Wales 2258, Australia. ; 1] Department of Surgery, Royal North Shore Hospital, St Leonards, Sydney, New South Wales 2065, Australia [2] University of Sydney, Sydney, New South Wales 2006, Australia. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] University of Sydney, Sydney, New South Wales 2006, Australia [3] Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia. ; 1] Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia [2] School of Medicine, University of Western Sydney, Penrith, New South Wales 2175, Australia. ; Department of Surgery, Fremantle Hospital, Alma Street, Fremantle, Western Australia 6160, Australia. ; Department of Gastroenterology, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia. ; Department of Surgery, Princess Alexandra Hospital, Ipswich Rd, Woollongabba, Queensland 4102, Australia. ; 1] School of Surgery M507, University of Western Australia, 35 Stirling Highway, Nedlands 6009, Australia [2] St John of God Pathology, 12 Salvado Rd, Subiaco, Western Australia 6008, Australia [3] Bendat Family Comprehensive Cancer Centre, St John of God Subiaco Hospital, Subiaco, Western Australia 6008, Australia. ; 1] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK [2] Academic Unit of Surgery, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G4 OSF, UK [3] West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK. ; 1] Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK [2] Department of Medical Oncology, Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow G12 0YN, UK. ; Norlux Neuro-Oncology Laboratory, CRP-Sante Luxembourg, 84 Val Fleuri, L-1526, Luxembourg. ; Norlux Neuro-Oncology, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5019 Bergen, Norway. ; Departments of Surgery and Pathology, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany. ; Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. ; Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston Texas 77030, USA. ; The David M. Rubenstein Pancreatic Cancer Research Center and Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. ; 1] ARC-NET Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona 37134, Italy [2] Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy. ; ARC-NET Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona 37134, Italy. ; Department of Surgery and Oncology, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy. ; 1] Department of Surgery and Oncology, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy [2] Departments of Surgery and Pathology, Ospedale Sacro Cuore Don Calabria Negrar, Verona 37024, Italy. ; 1] Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy [2] Departments of Surgery and Pathology, Ospedale Sacro Cuore Don Calabria Negrar, Verona 37024, Italy. ; Department of Oncology, University and Hospital Trust of Verona, Verona 37134, Italy. ; Division of Hematology and Oncology, University of California, San Francisco, California 94122, USA. ; 1] The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia [2] University of Sydney, Sydney, New South Wales 2006, Australia. ; Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25719666" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/drug therapy/genetics ; Animals ; Carcinoma, Pancreatic Ductal/drug therapy/genetics ; *DNA Mutational Analysis ; DNA Repair/genetics ; Female ; Genes, BRCA1 ; Genes, BRCA2 ; Genetic Markers/genetics ; Genome, Human/*genetics ; Genomic Instability/genetics ; *Genomics ; Genotype ; Humans ; Mice ; Mutation/*genetics ; Pancreatic Neoplasms/classification/drug therapy/*genetics ; Platinum/pharmacology ; Point Mutation/genetics ; Poly(ADP-ribose) Polymerase Inhibitors ; Xenograft Model Antitumor Assays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-04-14
    Description: The cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl− channel that apparently has evolved from an ancestral active transporter. Key to the CFTR's switch from pump to channel function may have been the appearance of one or more “lateral portals.” Such portals connect the cytoplasm to the transmembrane channel pore, allowing a continuous pathway for the electrodiffusional movement of Cl− ions. However, these portals remain the least well-characterized part of the Cl− transport pathway; even the number of functional portals is uncertain, and if multiple portals do exist, their relative functional contributions are unknown. Here, we used patch-clamp recording to identify the contributions of positively charged amino acid side chains located in CFTR's cytoplasmic transmembrane extensions to portal function. Mutagenesis-mediated neutralization of several charged side chains reduced single-channel Cl− conductance. However, these same mutations differentially affected channel blockade by cytoplasmic suramin and Pt(NO2)42− anions. We considered and tested several models by which the contribution of these positively charged side chains to one or more independent or non-independent portals to the pore could affect Cl− conductance and interactions with blockers. Overall, our results suggest the existence of a single portal that is lined by several positively charged side chains that interact electrostatically with both Cl− and blocking anions. We further propose that mutations at other sites indirectly alter the function of this single portal. Comparison of our functional results with recent structural information on CFTR completes our picture of the overall molecular architecture of the Cl− permeation pathway.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...