Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-06-09
    Description: Voltage-gated sodium (Na(v)) channels are essential for the rapid depolarization of nerve and muscle, and are important drug targets. Determination of the structures of Na(v) channels will shed light on ion channel mechanisms and facilitate potential clinical applications. A family of bacterial Na(v) channels, exemplified by the Na(+)-selective channel of bacteria (NaChBac), provides a useful model system for structure-function analysis. Here we report the crystal structure of Na(v)Rh, a NaChBac orthologue from the marine alphaproteobacterium HIMB114 (Rickettsiales sp. HIMB114; denoted Rh), at 3.05 A resolution. The channel comprises an asymmetric tetramer. The carbonyl oxygen atoms of Thr 178 and Leu 179 constitute an inner site within the selectivity filter where a hydrated Ca(2+) resides in the crystal structure. The outer mouth of the Na(+) selectivity filter, defined by Ser 181 and Glu 183, is closed, as is the activation gate at the intracellular side of the pore. The voltage sensors adopt a depolarized conformation in which all the gating charges are exposed to the extracellular environment. We propose that Na(v)Rh is in an 'inactivated' conformation. Comparison of Na(v)Rh with Na(v)Ab reveals considerable conformational rearrangements that may underlie the electromechanical coupling mechanism of voltage-gated channels.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3979295/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3979295/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Xu -- Ren, Wenlin -- DeCaen, Paul -- Yan, Chuangye -- Tao, Xiao -- Tang, Lin -- Wang, Jingjing -- Hasegawa, Kazuya -- Kumasaka, Takashi -- He, Jianhua -- Wang, Jiawei -- Clapham, David E -- Yan, Nieng -- P01 NS072040/NS/NINDS NIH HHS/ -- T32 HL007572/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 May 20;486(7401):130-4. doi: 10.1038/nature11054.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Bio-membrane and Membrane Biotechnology, Center for Structural Biology, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22678295" target="_blank"〉PubMed〈/a〉
    Keywords: Alphaproteobacteria/*chemistry ; Amino Acid Sequence ; Bacterial Proteins/*chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; HEK293 Cells ; Humans ; *Ion Channel Gating ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Sodium Channels/*chemistry/metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-12-18
    Description: Primary cilia are solitary, non-motile extensions of the centriole found on nearly all nucleated eukaryotic cells between cell divisions. Only approximately 200-300 nm in diameter and a few micrometres long, they are separated from the cytoplasm by the ciliary neck and basal body. Often called sensory cilia, they are thought to receive chemical and mechanical stimuli and initiate specific cellular signal transduction pathways. When activated by a ligand, hedgehog pathway proteins, such as GLI2 and smoothened (SMO), translocate from the cell into the cilium. Mutations in primary ciliary proteins are associated with severe developmental defects. The ionic conditions, permeability of the primary cilia membrane, and effectiveness of the diffusion barriers between the cilia and cell body are unknown. Here we show that cilia are a unique calcium compartment regulated by a heteromeric TRP channel, PKD1L1-PKD2L1, in mice and humans. In contrast to the hypothesis that polycystin (PKD) channels initiate changes in ciliary calcium that are conducted into the cytoplasm, we show that changes in ciliary calcium concentration occur without substantially altering global cytoplasmic calcium. PKD1L1-PKD2L1 acts as a ciliary calcium channel controlling ciliary calcium concentration and thereby modifying SMO-activated GLI2 translocation and GLI1 expression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4112737/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4112737/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Delling, Markus -- DeCaen, Paul G -- Doerner, Julia F -- Febvay, Sebastien -- Clapham, David E -- P01 NS072040/NS/NINDS NIH HHS/ -- P30 HD018655/HD/NICHD NIH HHS/ -- P30-HD 18655/HD/NICHD NIH HHS/ -- T32-HL007572/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Dec 12;504(7479):311-4. doi: 10.1038/nature12833.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Howard Hughes Medical Institute, Department of Cardiology, Boston Children's Hospital, 320 Longwood Avenue, Boston, Massachusetts 02115, USA [2]. ; Howard Hughes Medical Institute, Department of Cardiology, Boston Children's Hospital, 320 Longwood Avenue, Boston, Massachusetts 02115, USA. ; 1] Howard Hughes Medical Institute, Department of Cardiology, Boston Children's Hospital, 320 Longwood Avenue, Boston, Massachusetts 02115, USA [2] Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24336288" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Calcium Channels/chemistry/*metabolism ; *Calcium Signaling ; Cells, Cultured ; Cilia/*metabolism ; Cytoplasm/metabolism ; Female ; Hedgehog Proteins/deficiency/genetics/*metabolism ; Humans ; Kruppel-Like Transcription Factors/metabolism ; Male ; Membrane Proteins/chemistry/deficiency/metabolism ; Mice ; Nuclear Proteins/metabolism ; Organelles/*metabolism ; Receptors, Cell Surface/chemistry/metabolism ; Receptors, G-Protein-Coupled/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-04-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clapham, David E -- England -- Nature. 2015 Apr 23;520(7548):439-41. doi: 10.1038/nature14383. Epub 2015 Apr 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Cardiology, Boston Children's Hospital, and the Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25855290" target="_blank"〉PubMed〈/a〉
    Keywords: Calcium Channels/*chemistry/*ultrastructure ; *Cryoelectron Microscopy ; Humans ; Nerve Tissue Proteins/*chemistry/*ultrastructure ; Transient Receptor Potential Channels/*chemistry/*ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-11-05
    Description: Non-mammalian vertebrates have an intrinsically photosensitive iris and thus a local pupillary light reflex (PLR). In contrast, it is thought that the PLR in mammals generally requires neuronal circuitry connecting the eye and the brain. Here we report that an intrinsic component of the PLR is in fact widespread in nocturnal and crepuscular mammals. In mouse, this intrinsic PLR requires the visual pigment melanopsin; it also requires PLCbeta4, a vertebrate homologue of the Drosophila NorpA phospholipase C which mediates rhabdomeric phototransduction. The Plcb4(-/-) genotype, in addition to removing the intrinsic PLR, also essentially eliminates the intrinsic light response of the M1 subtype of melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (M1-ipRGCs), which are by far the most photosensitive ipRGC subtype and also have the largest response to light. Ablating in mouse the expression of both TRPC6 and TRPC7, members of the TRP channel superfamily, also essentially eliminated the M1-ipRGC light response but the intrinsic PLR was not affected. Thus, melanopsin signalling exists in both iris and retina, involving a PLCbeta4-mediated pathway that nonetheless diverges in the two locations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3270891/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3270891/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xue, T -- Do, M T H -- Riccio, A -- Jiang, Z -- Hsieh, J -- Wang, H C -- Merbs, S L -- Welsbie, D S -- Yoshioka, T -- Weissgerber, P -- Stolz, S -- Flockerzi, V -- Freichel, M -- Simon, M I -- Clapham, D E -- Yau, K-W -- EY14596/EY/NEI NIH HHS/ -- R01 DC006904/DC/NIDCD NIH HHS/ -- R01 DC006904-07/DC/NIDCD NIH HHS/ -- R01 DC006904-08/DC/NIDCD NIH HHS/ -- R01 DC006904-09/DC/NIDCD NIH HHS/ -- R01 EY006837/EY/NEI NIH HHS/ -- R01 EY006837-22/EY/NEI NIH HHS/ -- R01 EY006837-23/EY/NEI NIH HHS/ -- R01 EY006837-24/EY/NEI NIH HHS/ -- R37 EY006837/EY/NEI NIH HHS/ -- R37 EY006837-13/EY/NEI NIH HHS/ -- R37 EY006837-14/EY/NEI NIH HHS/ -- R37 EY006837-15/EY/NEI NIH HHS/ -- R37 EY006837-15S1/EY/NEI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Nov 2;479(7371):67-73. doi: 10.1038/nature10567.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA. txue77@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22051675" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Iris/anatomy & histology/cytology/*metabolism/*radiation effects ; Light Signal Transduction/physiology/*radiation effects ; Mammals/*physiology ; Mice ; Phospholipase C beta/metabolism ; Photic Stimulation ; Primates/physiology ; Reflex, Pupillary/physiology/radiation effects ; Retina/cytology/*metabolism/*radiation effects ; Retinal Ganglion Cells/metabolism/radiation effects ; Rod Opsins/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-03-24
    Description: Primary cilia are solitary, generally non-motile, hair-like protrusions that extend from the surface of cells between cell divisions. Their antenna-like structure leads naturally to the assumption that they sense the surrounding environment, the most common hypothesis being sensation of mechanical force through calcium-permeable ion channels within the cilium. This Ca(2+)-responsive mechanosensor hypothesis for primary cilia has been invoked to explain a large range of biological responses, from control of left-right axis determination in embryonic development to adult progression of polycystic kidney disease and some cancers. Here we report the complete lack of mechanically induced calcium increases in primary cilia, in tissues upon which this hypothesis has been based. We developed a transgenic mouse, Arl13b-mCherry-GECO1.2, expressing a ratiometric genetically encoded calcium indicator in all primary cilia. We then measured responses to flow in primary cilia of cultured kidney epithelial cells, kidney thick ascending tubules, crown cells of the embryonic node, kinocilia of inner ear hair cells, and several cell lines. Cilia-specific Ca(2+) influxes were not observed in physiological or even highly supraphysiological levels of fluid flow. We conclude that mechanosensation, if it originates in primary cilia, is not via calcium signalling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851444/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851444/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Delling, M -- Indzhykulian, A A -- Liu, X -- Li, Y -- Xie, T -- Corey, D P -- Clapham, D E -- 5R01 DC000304/DC/NIDCD NIH HHS/ -- P30-HD 18655/HD/NICHD NIH HHS/ -- R01 DC000304/DC/NIDCD NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Mar 31;531(7596):656-60. doi: 10.1038/nature17426. Epub 2016 Mar 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cardiology, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA. ; Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Image and Data Analysis Core (IDAC), Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27007841" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/analysis/*metabolism ; Calcium Signaling ; Cilia/*metabolism ; Embryo, Mammalian/cytology ; Epithelial Cells/cytology ; Female ; Hair Cells, Auditory, Inner/cytology ; Kidney/cytology ; Male ; *Mechanotransduction, Cellular ; Mice ; Mice, Transgenic ; Models, Biological
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-12-18
    Description: A primary cilium is a solitary, slender, non-motile protuberance of structured microtubules (9+0) enclosed by plasma membrane. Housing components of the cell division apparatus between cell divisions, primary cilia also serve as specialized compartments for calcium signalling and hedgehog signalling pathways. Specialized sensory cilia such as retinal photoreceptors and olfactory cilia use diverse ion channels. An ion current has been measured from primary cilia of kidney cells, but the responsible genes have not been identified. The polycystin proteins (PC and PKD), identified in linkage studies of polycystic kidney disease, are candidate channels divided into two structural classes: 11-transmembrane proteins (PKD1, PKD1L1 and PKD1L2) remarkable for a large extracellular amino terminus of putative cell adhesion domains and a G-protein-coupled receptor proteolytic site, and the 6-transmembrane channel proteins (PKD2, PKD2L1 and PKD2L2; TRPPs). Evidence indicates that the PKD1 proteins associate with the PKD2 proteins via coiled-coil domains. Here we use a transgenic mouse in which only cilia express a fluorophore and use it to record directly from primary cilia, and demonstrate that PKD1L1 and PKD2L1 form ion channels at high densities in several cell types. In conjunction with an accompanying manuscript, we show that the PKD1L1-PKD2L1 heteromeric channel establishes the cilia as a unique calcium compartment within cells that modulates established hedgehog pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4073646/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4073646/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DeCaen, Paul G -- Delling, Markus -- Vien, Thuy N -- Clapham, David E -- P01 NS072040/NS/NINDS NIH HHS/ -- P30 HD018655/HD/NICHD NIH HHS/ -- P30 HD18655/HD/NICHD NIH HHS/ -- T32 HL007572/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Dec 12;504(7479):315-8. doi: 10.1038/nature12832.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Howard Hughes Medical Institute, Department of Cardiology, Children's Hospital Boston, 320 Longwood Avenue, Boston, Massachusetts 02115, USA [2]. ; Department of Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts 02111, USA. ; 1] Howard Hughes Medical Institute, Department of Cardiology, Children's Hospital Boston, 320 Longwood Avenue, Boston, Massachusetts 02115, USA [2] Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24336289" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium Channels/deficiency/genetics/*metabolism ; Cell Division ; Cell Line ; Cell Membrane/metabolism ; Cells, Cultured ; Cilia/*metabolism ; HEK293 Cells ; Hedgehog Proteins/metabolism ; Humans ; Membrane Proteins/deficiency/genetics/metabolism ; Mice ; Mice, Transgenic ; Oncogene Proteins/metabolism ; Receptors, Cell Surface/deficiency/genetics/metabolism ; Receptors, G-Protein-Coupled/genetics/metabolism ; Trans-Activators/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-11-16
    Description: The mitochondrial uniporter is a highly selective calcium channel in the organelle's inner membrane. Its molecular components include the EF-hand-containing calcium-binding proteins mitochondrial calcium uptake 1 (MICU1) and MICU2 and the pore-forming subunit mitochondrial calcium uniporter (MCU). We sought to achieve a full molecular characterization of the uniporter holocomplex (uniplex). Quantitative mass spectrometry of affinity-purified uniplex recovered MICU1 and MICU2, MCU and its paralog MCUb, and essential MCU regulator (EMRE), a previously uncharacterized protein. EMRE is a 10-kilodalton, metazoan-specific protein with a single transmembrane domain. In its absence, uniporter channel activity was lost despite intact MCU expression and oligomerization. EMRE was required for the interaction of MCU with MICU1 and MICU2. Hence, EMRE is essential for in vivo uniporter current and additionally bridges the calcium-sensing role of MICU1 and MICU2 with the calcium-conducting role of MCU.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4091629/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4091629/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sancak, Yasemin -- Markhard, Andrew L -- Kitami, Toshimori -- Kovacs-Bogdan, Erika -- Kamer, Kimberli J -- Udeshi, Namrata D -- Carr, Steven A -- Chaudhuri, Dipayan -- Clapham, David E -- Li, Andrew A -- Calvo, Sarah E -- Goldberger, Olga -- Mootha, Vamsi K -- DK080261/DK/NIDDK NIH HHS/ -- F32 HL107021/HL/NHLBI NIH HHS/ -- F32HL107021/HL/NHLBI NIH HHS/ -- P30 HD018655/HD/NICHD NIH HHS/ -- R24 DK080261/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Dec 13;342(6164):1379-82. doi: 10.1126/science.1242993. Epub 2013 Nov 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Massachusetts General Hospital, Department of Systems Biology, Harvard Medical School, Boston, MA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24231807" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Calcium Channels/chemistry/genetics/*metabolism ; Calcium-Binding Proteins/genetics/*metabolism ; Cation Transport Proteins/genetics/*metabolism ; Cell Membrane/*metabolism ; EF Hand Motifs ; Gene Knockdown Techniques ; HEK293 Cells ; Humans ; Mitochondria/*metabolism ; Mitochondrial Membrane Transport Proteins/genetics/*metabolism ; Molecular Sequence Data ; Phylogeny ; Protein Structure, Tertiary ; Proteomics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Heart rate is slowed in part by acetylcholine-dependent activation of a cardiac potassium (K+) channel, IKACh. Activated muscarinic receptors stimulate lKAch via the G-protein βγ-subunits. It has been assumed that the inwardly ...
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 17 (1994), S. 441-464 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...