Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2242
    Keywords: Agrocybe aegerita ; Genetic variability ; Incompatibility genes ; Allelic series
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The variability of the sexual incompatibility genes of Agrocybe aegerita was investigated in the homokaryotic progeny of 13 wild dikaryotic strains from five distinct European geographic origins. Results of mating tests allowed identification of 18 A alleles and 16 B alleles out of a possible 26 different alleles for each in the sample. The determination and the comparison by a contingency χ 2 test of the frequencies of allele replications between intra- and interregional matings showed no departure from a random distribution of incompatibility alleles. The allelic series estimated for the incompatibility genes of the entire population of A. aegerita, 30 A and 25 B aleles, are significantly less extensive than those already hypothesized for other tetrapolar hymenomycetes. However, the low variability of incompatibility genes has little effect on the outbreeding efficiency (92.6%) of this mushroom. The low variability of the incompatibility alleles and the apparent absence of intrafactorial recombination could relate to a single-locus structure of the incompatibility genes in A. aegerita.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1546-170X
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] Viral and host factors influence the rate of HIV-1 disease progression1. For HIV-1 to fuse, a CD4+ cell must express a co-receptor that the virus can use2,3. The chemokine receptors CCR5 and CXCR4 are used by R5 and X4 viruses, respectively4. Most new infections involve transmission of R5 viruses, ...
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-02-04
    Description: Effective clinical management of prostate cancer (PCA) has been challenged by significant intratumoural heterogeneity on the genomic and pathological levels and limited understanding of the genetic elements governing disease progression. Here, we exploited the experimental merits of the mouse to test the hypothesis that pathways constraining progression might be activated in indolent Pten-null mouse prostate tumours and that inactivation of such progression barriers in mice would engender a metastasis-prone condition. Comparative transcriptomic and canonical pathway analyses, followed by biochemical confirmation, of normal prostate epithelium versus poorly progressive Pten-null prostate cancers revealed robust activation of the TGFbeta/BMP-SMAD4 signalling axis. The functional relevance of SMAD4 was further supported by emergence of invasive, metastatic and lethal prostate cancers with 100% penetrance upon genetic deletion of Smad4 in the Pten-null mouse prostate. Pathological and molecular analysis as well as transcriptomic knowledge-based pathway profiling of emerging tumours identified cell proliferation and invasion as two cardinal tumour biological features in the metastatic Smad4/Pten-null PCA model. Follow-on pathological and functional assessment confirmed cyclin D1 and SPP1 as key mediators of these biological processes, which together with PTEN and SMAD4, form a four-gene signature that is prognostic of prostate-specific antigen (PSA) biochemical recurrence and lethal metastasis in human PCA. This model-informed progression analysis, together with genetic, functional and translational studies, establishes SMAD4 as a key regulator of PCA progression in mice and humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753179/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753179/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ding, Zhihu -- Wu, Chang-Jiun -- Chu, Gerald C -- Xiao, Yonghong -- Ho, Dennis -- Zhang, Jingfang -- Perry, Samuel R -- Labrot, Emma S -- Wu, Xiaoqiu -- Lis, Rosina -- Hoshida, Yujin -- Hiller, David -- Hu, Baoli -- Jiang, Shan -- Zheng, Hongwu -- Stegh, Alexander H -- Scott, Kenneth L -- Signoretti, Sabina -- Bardeesy, Nabeel -- Wang, Y Alan -- Hill, David E -- Golub, Todd R -- Stampfer, Meir J -- Wong, Wing H -- Loda, Massimo -- Mucci, Lorelei -- Chin, Lynda -- DePinho, Ronald A -- P50 CA090381/CA/NCI NIH HHS/ -- P50 CA090381-08/CA/NCI NIH HHS/ -- P50 CA90381/CA/NCI NIH HHS/ -- R01 5R01CA136578/CA/NCI NIH HHS/ -- R01 CA131945/CA/NCI NIH HHS/ -- R01CA131945/CA/NCI NIH HHS/ -- R01CA141298/CA/NCI NIH HHS/ -- U01-CA84313/CA/NCI NIH HHS/ -- England -- Nature. 2011 Feb 10;470(7333):269-73. doi: 10.1038/nature09677. Epub 2011 Feb 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21289624" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Morphogenetic Proteins/metabolism ; Cell Proliferation ; Cyclin D1/genetics/metabolism ; *Disease Progression ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Genes, Tumor Suppressor/physiology ; Humans ; Lung Neoplasms/secondary ; Lymphatic Metastasis ; Male ; Mice ; Mice, Transgenic ; Models, Biological ; Neoplasm Invasiveness/genetics/pathology ; Neoplasm Metastasis/genetics/*pathology ; Osteopontin/genetics/metabolism ; PTEN Phosphohydrolase/deficiency/genetics ; Penetrance ; Prognosis ; Prostate/metabolism ; Prostate-Specific Antigen/metabolism ; Prostatic Neoplasms/diagnosis/genetics/*pathology ; Smad4 Protein/deficiency/genetics/*metabolism ; Transforming Growth Factor beta
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-08-17
    Description: Inactivation of tumour-suppressor genes by homozygous deletion is a prototypic event in the cancer genome, yet such deletions often encompass neighbouring genes. We propose that homozygous deletions in such passenger genes can expose cancer-specific therapeutic vulnerabilities when the collaterally deleted gene is a member of a functionally redundant family of genes carrying out an essential function. The glycolytic gene enolase 1 (ENO1) in the 1p36 locus is deleted in glioblastoma (GBM), which is tolerated by the expression of ENO2. Here we show that short-hairpin-RNA-mediated silencing of ENO2 selectively inhibits growth, survival and the tumorigenic potential of ENO1-deleted GBM cells, and that the enolase inhibitor phosphonoacetohydroxamate is selectively toxic to ENO1-deleted GBM cells relative to ENO1-intact GBM cells or normal astrocytes. The principle of collateral vulnerability should be applicable to other passenger-deleted genes encoding functionally redundant essential activities and provide an effective treatment strategy for cancers containing such genomic events.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712624/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712624/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muller, Florian L -- Colla, Simona -- Aquilanti, Elisa -- Manzo, Veronica E -- Genovese, Giannicola -- Lee, Jaclyn -- Eisenson, Daniel -- Narurkar, Rujuta -- Deng, Pingna -- Nezi, Luigi -- Lee, Michelle A -- Hu, Baoli -- Hu, Jian -- Sahin, Ergun -- Ong, Derrick -- Fletcher-Sananikone, Eliot -- Ho, Dennis -- Kwong, Lawrence -- Brennan, Cameron -- Wang, Y Alan -- Chin, Lynda -- DePinho, Ronald A -- 3 P01 CA095616-08S1/CA/NCI NIH HHS/ -- 57006984/Howard Hughes Medical Institute/ -- P01 CA095616/CA/NCI NIH HHS/ -- P01CA95616/CA/NCI NIH HHS/ -- T32-CA009361/CA/NCI NIH HHS/ -- England -- Nature. 2012 Aug 16;488(7411):337-42. doi: 10.1038/nature11331.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22895339" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/pharmacology/therapeutic use ; Biomarkers, Tumor/deficiency/genetics ; Brain Neoplasms/*drug therapy/*genetics/pathology ; Cell Line, Tumor ; Cell Proliferation ; Chromosomes, Human, Pair 1/genetics ; DNA-Binding Proteins/deficiency/genetics ; Enzyme Inhibitors ; Gene Expression Regulation, Neoplastic ; Gene Knockdown Techniques ; Genes, Essential/*genetics ; Genes, Tumor Suppressor ; Glioblastoma/*drug therapy/*genetics/pathology ; Homozygote ; Humans ; Hydroxamic Acids/pharmacology/therapeutic use ; Mice ; Molecular Targeted Therapy/*methods ; Neoplasm Transplantation ; Phosphonoacetic Acid/analogs & derivatives/pharmacology/therapeutic use ; Phosphopyruvate Hydratase/antagonists & inhibitors/deficiency/genetics/metabolism ; RNA, Small Interfering/genetics ; Sequence Deletion/*genetics ; Tumor Suppressor Proteins/deficiency/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-07-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muller, Florian -- Colla, Simona -- Aquilanti, Elisa -- Manzo, Veronica E -- Genovese, Giannicola -- Lee, Jaclyn -- Eisenson, Daniel -- Narurkar, Rujuta -- Deng, Pingna -- Nezi, Luigi -- Lee, Michelle -- Hu, Baoli -- Hu, Jian -- Sahin, Ergun -- Ong, Derrick -- Fletcher-Sananikone, Eliot -- Ho, Dennis -- Kwong, Lawrence -- Brennan, Cameron -- Wang, Y Alan -- Chin, Lynda -- DePinho, Ronald A -- England -- Nature. 2015 Sep 10;525(7568):278. doi: 10.1038/nature14609. Epub 2015 Jul 8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26153864" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-11-08
    Description: Journal of Medicinal Chemistry DOI: 10.1021/acs.jmedchem.8b01120
    Topics: Chemistry and Pharmacology
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-07-24
    Description: The zoonotic pathogen Pasteurella multocida produces a 146-kDa modular toxin (PMT) that enters host cells and manipulates intracellular signaling through action on its Gα protein targets. The N terminus of PMT (PMT-N) mediates cellular uptake through receptor-mediated endocytosis, followed by the delivery of the C-terminal catalytic domain from acidic endosomes into the cytosol. The putative native cargo of PMT consists of a 710-residue polypeptide with three distinct modular subdomains (C1-C2-C3), where C1 contains a membrane localization domain (MLD), C2 has an as-yet-undefined function, and C3 catalyzes the deamidation of a specific active-site glutamine residue in Gα protein targets. However, whether the three cargo subdomains are delivered intact or undergo further proteolytic processing during or after translocation from the late endosome is unclear. Here, we demonstrate that PMT-N mediates the delivery of its native C-terminal cargo as a single polypeptide, corresponding to C1-C2-C3, including the MLD, with no evidence of cleavage between subdomains. We show that PMT-N also delivers nonnative green fluorescent protein (GFP) cargo into the cytosol, further supporting that the receptor-binding and translocation functions reside within PMT-N. Our findings further show that PMT-N can deliver C1-C2 alone but that the presence of C1-C2 is important for the cytosolic delivery of the catalytic C3 subdomain by PMT-N. In addition, we further refine the minimum C3 domain required for intracellular activity as comprising residues 1105 to 1278. These findings reinforce that PMT-N serves as the cytosolic delivery vehicle for C-terminal cargo and demonstrate that its native cargo is delivered intact as C1-C2-C3.
    Print ISSN: 0019-9567
    Electronic ISSN: 1098-5522
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-02-13
    Description: Mathematical modeling of the impact of cytokine response of acute myeloid leukemia cells on patient prognosis Mathematical modeling of the impact of cytokine response of acute myeloid leukemia cells on patient prognosis, Published online: 12 February 2018; doi:10.1038/s41598-018-21115-4 Mathematical modeling of the impact of cytokine response of acute myeloid leukemia cells on patient prognosis
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-02-16
    Description: Immune checkpoint inhibitors targeting the programmed cell death 1 receptor (PD-1) improve survival in a subset of patients with clear cell renal cell carcinoma (ccRCC). To identify genomic alterations in ccRCC that correlate with response to anti–PD-1 monotherapy, we performed whole-exome sequencing of metastatic ccRCC from 35 patients. We found that clinical benefit was associated with loss-of-function mutations in the PBRM1 gene ( P = 0.012), which encodes a subunit of the PBAF switch-sucrose nonfermentable (SWI/SNF) chromatin remodeling complex. We confirmed this finding in an independent validation cohort of 63 ccRCC patients treated with PD-1 or PD-L1 (PD-1 ligand) blockade therapy alone or in combination with anti–CTLA-4 (cytotoxic T lymphocyte-associated protein 4) therapies ( P = 0.0071). Gene-expression analysis of PBAF-deficient ccRCC cell lines and PBRM1 -deficient tumors revealed altered transcriptional output in JAK-STAT (Janus kinase–signal transducers and activators of transcription), hypoxia, and immune signaling pathways. PBRM1 loss in ccRCC may alter global tumor-cell expression profiles to influence responsiveness to immune checkpoint therapy.
    Keywords: Medicine, Diseases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-05
    Description: Combination of aptamer and drug for reversible anticoagulation in cardiopulmonary bypass Combination of aptamer and drug for reversible anticoagulation in cardiopulmonary bypass, Published online: 04 June 2018; doi:10.1038/nbt.4153 An aptamer is combined with a drug to prevent clot formation in a model of cardiopulmonary bypass.
    Print ISSN: 1087-0156
    Electronic ISSN: 1546-1696
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...