Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-07-22
    Description: Tumour oncogenes include transcription factors that co-opt the general transcriptional machinery to sustain the oncogenic state, but direct pharmacological inhibition of transcription factors has so far proven difficult. However, the transcriptional machinery contains various enzymatic cofactors that can be targeted for the development of new therapeutic candidates, including cyclin-dependent kinases (CDKs). Here we present the discovery and characterization of a covalent CDK7 inhibitor, THZ1, which has the unprecedented ability to target a remote cysteine residue located outside of the canonical kinase domain, providing an unanticipated means of achieving selectivity for CDK7. Cancer cell-line profiling indicates that a subset of cancer cell lines, including human T-cell acute lymphoblastic leukaemia (T-ALL), have exceptional sensitivity to THZ1. Genome-wide analysis in Jurkat T-ALL cells shows that THZ1 disproportionally affects transcription of RUNX1 and suggests that sensitivity to THZ1 may be due to vulnerability conferred by the RUNX1 super-enhancer and the key role of RUNX1 in the core transcriptional regulatory circuitry of these tumour cells. Pharmacological modulation of CDK7 kinase activity may thus provide an approach to identify and treat tumour types that are dependent on transcription for maintenance of the oncogenic state.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4244910/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4244910/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kwiatkowski, Nicholas -- Zhang, Tinghu -- Rahl, Peter B -- Abraham, Brian J -- Reddy, Jessica -- Ficarro, Scott B -- Dastur, Anahita -- Amzallag, Arnaud -- Ramaswamy, Sridhar -- Tesar, Bethany -- Jenkins, Catherine E -- Hannett, Nancy M -- McMillin, Douglas -- Sanda, Takaomi -- Sim, Taebo -- Kim, Nam Doo -- Look, Thomas -- Mitsiades, Constantine S -- Weng, Andrew P -- Brown, Jennifer R -- Benes, Cyril H -- Marto, Jarrod A -- Young, Richard A -- Gray, Nathanael S -- CA109901/CA/NCI NIH HHS/ -- CA178860-01/CA/NCI NIH HHS/ -- HG002668/HG/NHGRI NIH HHS/ -- P01 NS047572/NS/NINDS NIH HHS/ -- P01 NS047572-10/NS/NINDS NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- R01 CA130876/CA/NCI NIH HHS/ -- R01 CA130876-04/CA/NCI NIH HHS/ -- R01 CA179483/CA/NCI NIH HHS/ -- R01 HG002668/HG/NHGRI NIH HHS/ -- R21 CA178860/CA/NCI NIH HHS/ -- T32 GM008042/GM/NIGMS NIH HHS/ -- U54 HG006097/HG/NHGRI NIH HHS/ -- U54 HG006097-02/HG/NHGRI NIH HHS/ -- England -- Nature. 2014 Jul 31;511(7511):616-20. doi: 10.1038/nature13393. Epub 2014 Jun 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA [2] Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA [4]. ; 1] Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA [2] Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA [3]. ; Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA. ; 1] Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. ; 1] Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA [2] Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA. ; Department of Medicine Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts 02129, USA. ; 1] Department of Medicine Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts 02129, USA [2] Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA. ; 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada. ; 1] Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA [2] Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore. ; Chemical Kinomics Research Center, Korea Institute of Science and Technology, 39-1, Hawolgok-dong, Seongbuk-gu, Seoul 136-791, Korea, and KU-KIST Graduate School of Converging Science and Technology, 145, Anam-ro, Seongbuk-gu, Seoul 136-713, Korea. ; Daegu-Gyeongbuk Medical Innovation Foundation, 2387 dalgubeol-daero, Suseong-gu, Daegu 706-010, Korea. ; 1] Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA [2] Division of Hematology/Oncology, Children's Hospital, Boston, Massachusetts 02115 USA. ; 1] Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA [2] Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043025" target="_blank"〉PubMed〈/a〉
    Keywords: Antineoplastic Agents/pharmacology ; Cell Line, Tumor ; Cell Proliferation/drug effects ; Cell Survival/drug effects ; Core Binding Factor Alpha 2 Subunit/metabolism ; Cyclin-Dependent Kinases/antagonists & inhibitors ; Cysteine/metabolism ; Enzyme Inhibitors/*pharmacology ; Gene Expression Regulation, Neoplastic/*drug effects ; Humans ; Jurkat Cells ; Phenylenediamines/*pharmacology ; Phosphorylation/drug effects ; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/*enzymology ; Pyrimidines/*pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: B-A translocations ; Catalase Mapping ; Structural genes ; Zea mays
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary B-A translocations have been used to map the catalase genes, Cat1, Cat2, and Cat3 of Zea mays. Cat1 was found to be on the short arm of chromosome 5, 9.1 map units from brittle endosperm (bt 1). Cat2 was located on chromosome 1S, while Cat3 was located on the distal half of chromosome 1L. There was no linkage between Cat2 and Cat3. The significance of mapping the catalase structural genes is discussed.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2242
    Keywords: Isozyme ; Wheat breeding ; Foot rotlesions ; Eyespot ; Aegilops ventricosa
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Thirty lines from a cross between VPM/ Moisson 421 and Selection 101 were used in the study to determine whether strawbreaker foot rot resistance derived from Aegilops ventricosa was associated with an allele for endopeptidase. The progeny examined for foot rot lesions represented F2 derived F5 lines and enzyme assays were done on F6 seedlings. The results indicate that the wheat and ‘VPM/Moisson 421’ endopeptidase alleles are distinctly different. The endopeptidase allele frequencies of 30 lines were compared with strawbreaker foot rot resistance as measured by the lesion severity index. The results demonstrate a close association between the gene for strawbreaker foot rot resistance and the endopeptidase allele derived from Ae. ventricosa.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1750-3841
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Notes: This study was designed to determine the effect of holding time before chilling of hot-boned ground beef on microbial growth. Twenty pounds of cauck were removed from the right sides of beef carcasses immediately after slaughter, ground through a 2.5-cm plate, and held in a 10°C room. At 1, 2, 4 and 8 hr after slaughter, 5 lb were chilled to 0°C with CO2 and ground through a 0.32-cm plate. Patties were formed, frozen in a CO2 tunnel and examined for coliforms, staphylococci, psychrotrophs, and mesophiles. Results show no significant differences between the four treatments and a conventionally processed control.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1327
    Keywords: Key words Laccase ; Copper protein ; Type 2-depleted laccase ; EPR spectroscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract  Understanding the structure and function of the three copper atoms in the dioxygen reduction site of the blue oxidases such as laccase has been a long standing challenge. In the case of a widely studied derivative, known as type 2-depleted laccase, the removal of one copper from the cluster abolishes the EPR signal of the so-called type 2 copper. However, the present studies of isotopically enriched protein from Polyporus versicolor show that the readily replaceable copper is not active in the low-temperature EPR spectrum of fungal laccase or its difluoride adduct. The same is true for the difluoride adduct of the tree enzyme. Thus, in type 2-depleted laccase the pattern of antiferromagnetic coupling is quite different from that of the native protein or the difluoride adduct.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...