Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: IN-VITRO ; MORTALITY ; RISK ; GENE ; TIME ; IMPACT ; protein expression ; CELL-GROWTH ; ESTROGEN ; HORMONE-THERAPY
    Abstract: BACKGROUND: Observational studies have reported a modest association between obesity and risk of ovarian cancer; however, whether it is also associated with survival and whether this association varies for the different histologic subtypes are not clear. We undertook an international collaborative analysis to assess the association between body mass index (BMI), assessed shortly before diagnosis, progression-free survival (PFS), ovarian cancer-specific survival and overall survival (OS) among women with invasive ovarian cancer. METHODS: We used original data from 21 studies, which included 12 390 women with ovarian carcinoma. We combined study-specific adjusted hazard ratios (HRs) using random-effects models to estimate pooled HRs (pHR). We further explored associations by histologic subtype. RESULTS: Overall, 6715 (54%) deaths occurred during follow-up. A significant OS disadvantage was observed for women who were obese (BMI: 30-34.9, pHR: 1.10 (95% confidence intervals (CIs): 0.99-1.23); BMI: 35, pHR: 1.12 (95% CI: 1.01-1.25)). Results were similar for PFS and ovarian cancer-specific survival. In analyses stratified by histologic subtype, associations were strongest for women with low-grade serous (pHR: 1.12 per 5 kg m(-2)) and endometrioid subtypes (pHR: 1.08 per 5 kg m(-2)), and more modest for the high-grade serous (pHR: 1.04 per 5 kg m(-2)) subtype, but only the association with high-grade serous cancers was significant. CONCLUSIONS: Higher BMI is associated with adverse survival among the majority of women with ovarian cancer.
    Type of Publication: Journal article published
    PubMed ID: 26151456
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Abstract: Epithelial ovarian cancer (EOC) is one of the deadliest common cancers. The five most common types of disease are high-grade and low-grade serous, endometrioid, mucinous and clear cell carcinoma. Each of these subtypes present distinct molecular pathogeneses and sensitivities to treatments. Recent studies show that certain genetic variants confer susceptibility to all subtypes while other variants are subtype-specific. Here, we perform an extensive analysis of the genetic architecture of EOC subtypes. To this end, we used data of 10,014 invasive EOC patients and 21,233 controls from the Ovarian Cancer Association Consortium genotyped in the iCOGS array (211,155 SNPs). We estimate the array heritability (attributable to variants tagged on arrays) of each subtype and their genetic correlations. We also look for genetic overlaps with factors such as obesity, smoking behaviors, diabetes, age at menarche and height. We estimated the array heritabilities of high-grade serous disease ([Formula: see text] = 8.8 +/- 1.1 %), endometrioid ([Formula: see text] = 3.2 +/- 1.6 %), clear cell ([Formula: see text] = 6.7 +/- 3.3 %) and all EOC ([Formula: see text] = 5.6 +/- 0.6 %). Known associated loci contributed approximately 40 % of the total array heritability for each subtype. The contribution of each chromosome to the total heritability was not proportional to chromosome size. Through bivariate and cross-trait LD score regression, we found evidence of shared genetic backgrounds between the three high-grade subtypes: serous, endometrioid and undifferentiated. Finally, we found significant genetic correlations of all EOC with diabetes and obesity using a polygenic prediction approach.
    Type of Publication: Journal article published
    PubMed ID: 27075448
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Abstract: BACKGROUND: Observational studies have reported a positive association between body mass index (BMI) and ovarian cancer risk. However, questions remain as to whether this represents a causal effect, or holds for all histological subtypes. The lack of association observed for serous cancers may, for instance, be due to disease-associated weight loss. Mendelian randomization (MR) uses genetic markers as proxies for risk factors to overcome limitations of observational studies. We used MR to elucidate the relationship between BMI and ovarian cancer, hypothesizing that genetically predicted BMI would be associated with increased risk of non-high grade serous ovarian cancers (non-HGSC) but not HGSC. METHODS: We pooled data from 39 studies (14 047 cases, 23 003 controls) in the Ovarian Cancer Association Consortium. We constructed a weighted genetic risk score (GRS, partial F-statistic = 172), summing alleles at 87 single nucleotide polymorphisms previously associated with BMI, weighting by their published strength of association with BMI. Applying two-stage predictor-substitution MR, we used logistic regression to estimate study-specific odds ratios (OR) and 95% confidence intervals (CI) for the association between genetically predicted BMI and risk, and pooled these using random-effects meta-analysis. RESULTS: Higher genetically predicted BMI was associated with increased risk of non-HGSC (pooled OR = 1.29, 95% CI 1.03-1.61 per 5 units BMI) but not HGSC (pooled OR = 1.06, 95% CI 0.88-1.27). Secondary analyses stratified by behaviour/subtype suggested that, consistent with observational data, the association was strongest for low-grade/borderline serous cancers (OR = 1.93, 95% CI 1.33-2.81). CONCLUSIONS: Our data suggest that higher BMI increases risk of non-HGSC, but not the more common and aggressive HGSC subtype, confirming the observational evidence.
    Type of Publication: Journal article published
    PubMed ID: 27401727
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...