Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Publication Date: 2018-08-31
    Description: In most mammals, the X and Y chromosomes synapse and recombine along a conserved region of homology known as the pseudoautosomal region (PAR). These homology-driven interactions are required for meiotic progression and are essential for male fertility. Although the PAR fulfills key meiotic functions in most mammals, several exceptional species lack PAR-mediated sex chromosome associations at meiosis. Here, we leveraged the natural variation in meiotic sex chromosome programs present in North American voles ( Microtus ) to investigate the relationship between meiotic sex chromosome dynamics and X/Y sequence homology. To this end, we developed a novel, reference-blind computational method to analyze sparse sequencing data from flow-sorted X and Y chromosomes isolated from vole species with sex chromosomes that always ( Microtus montanus ), never ( Microtus mogollonensis ), and occasionally synapse ( Microtus ochrogaster ) at meiosis. Unexpectedly, we find more shared X/Y homology in the two vole species with no and sporadic X/Y synapsis compared to the species with obligate synapsis. Sex chromosome homology in the asynaptic and occasionally synaptic species is interspersed along chromosomes and largely restricted to low-complexity sequences, including a striking enrichment for the telomeric repeat sequence, TTAGGG. In contrast, homology is concentrated in high complexity, and presumably euchromatic, sequence on the X and Y chromosomes of the synaptic vole species, M. montanus . Taken together, our findings suggest key conditions required to sustain the standard program of X/Y synapsis at meiosis and reveal an intriguing connection between heterochromatic repeat architecture and noncanonical, asynaptic mechanisms of sex chromosome segregation in voles.
    Print ISSN: 0016-6731
    Topics: Biology
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...