Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-01-24
    Description: The Rosetta mission shall accompany comet 67P/Churyumov-Gerasimenko from a heliocentric distance of 〉3.6 astronomical units through perihelion passage at 1.25 astronomical units, spanning low and maximum activity levels. Initially, the solar wind permeates the thin comet atmosphere formed from sublimation, until the size and plasma pressure of the ionized atmosphere define its boundaries: A magnetosphere is born. Using the Rosetta Plasma Consortium ion composition analyzer, we trace the evolution from the first detection of water ions to when the atmosphere begins repelling the solar wind (~3.3 astronomical units), and we report the spatial structure of this early interaction. The near-comet water population comprises accelerated ions (〈800 electron volts), produced upstream of Rosetta, and lower energy locally produced ions; we estimate the fluxes of both ion species and energetic neutral atoms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nilsson, Hans -- Stenberg Wieser, Gabriella -- Behar, Etienne -- Wedlund, Cyril Simon -- Gunell, Herbert -- Yamauchi, Masatoshi -- Lundin, Rickard -- Barabash, Stas -- Wieser, Martin -- Carr, Chris -- Cupido, Emanuele -- Burch, James L -- Fedorov, Andrei -- Sauvaud, Jean-Andre -- Koskinen, Hannu -- Kallio, Esa -- Lebreton, Jean-Pierre -- Eriksson, Anders -- Edberg, Niklas -- Goldstein, Raymond -- Henri, Pierre -- Koenders, Christoph -- Mokashi, Prachet -- Nemeth, Zoltan -- Richter, Ingo -- Szego, Karoly -- Volwerk, Martin -- Vallat, Claire -- Rubin, Martin -- New York, N.Y. -- Science. 2015 Jan 23;347(6220):aaa0571. doi: 10.1126/science.aaa0571.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Swedish Institute of Space Physics, Post Office Box 812, 981 28 Kiruna, Sweden. Lulea University of Technology, Department of Computer Science, Electrical and Space Engineering, Rymdcampus 1, 981 28 Kiruna, Sweden. hans.nilsson@irf.se. ; Swedish Institute of Space Physics, Post Office Box 812, 981 28 Kiruna, Sweden. ; Swedish Institute of Space Physics, Post Office Box 812, 981 28 Kiruna, Sweden. Lulea University of Technology, Department of Computer Science, Electrical and Space Engineering, Rymdcampus 1, 981 28 Kiruna, Sweden. ; Aalto University, School of Electrical Engineering, Department of Radio Science and Engineering, Post Office Box 13000, FI-00076 Aalto, Finland. ; Belgian Institute for Space Aeronomy, Avenue Circulaire 3, 1180 Brussels, Belgium. ; Imperial College London, Exhibition Road, London SW7 2AZ, UK. ; Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238, USA. ; Institut de Recherche en Astrophysique et Planetologie, Toulouse, France. ; Department of Physics, University of Helsinki, Post Office Box 64, FI-00014 Helsinki, Finland. Finnish Meteorological Institute, Post Office Box 503, FI-00101 Helsinki, Finland. ; Aalto University, School of Electrical Engineering, Department of Radio Science and Engineering, Post Office Box 13000, FI-00076 Aalto, Finland. Finnish Meteorological Institute, Post Office Box 503, FI-00101 Helsinki, Finland. ; Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR 7328 CNRS-Universite d'Orleans, France. ; Swedish Institute of Space Physics, Angstrom Laboratory, Lagerhyddsvagen 1, Uppsala, Sweden. ; Technicsche Universitat-Braunschweig, Institute for Geophysics and Extraterrestrial Physics, Mendelssohnstrasse 3, D-38106 Braunschweig, Germany. ; Wigner Research Centre for Physics, 1121 Konkoly Thege Street 29-33, Budapest, Hungary. ; Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, 8042 Graz, Austria. ; Rosetta Science Ground Segment, Science and Robotic Exploration (SRE-OOR), Office A006, European Space Astronomy Centre, Post Office Box 78, 28691 Villanueva de la Canada, Madrid, Spain. ; Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25613894" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-07-06
    Description: Supermassive black holes in the nuclei of active galaxies expel large amounts of matter through powerful winds of ionized gas. The archetypal active galaxy NGC 5548 has been studied for decades, and high-resolution x-ray and ultraviolet (UV) observations have previously shown a persistent ionized outflow. An observing campaign in 2013 with six space observatories shows the nucleus to be obscured by a long-lasting, clumpy stream of ionized gas not seen before. It blocks 90% of the soft x-ray emission and causes simultaneous deep, broad UV absorption troughs. The outflow velocities of this gas are up to five times faster than those in the persistent outflow, and, at a distance of only a few light days from the nucleus, it may likely originate from the accretion disk.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaastra, J S -- Kriss, G A -- Cappi, M -- Mehdipour, M -- Petrucci, P-O -- Steenbrugge, K C -- Arav, N -- Behar, E -- Bianchi, S -- Boissay, R -- Branduardi-Raymont, G -- Chamberlain, C -- Costantini, E -- Ely, J C -- Ebrero, J -- Di Gesu, L -- Harrison, F A -- Kaspi, S -- Malzac, J -- De Marco, B -- Matt, G -- Nandra, K -- Paltani, S -- Person, R -- Peterson, B M -- Pinto, C -- Ponti, G -- Pozo Nunez, F -- De Rosa, A -- Seta, H -- Ursini, F -- de Vries, C P -- Walton, D J -- Whewell, M -- New York, N.Y. -- Science. 2014 Jul 4;345(6192):64-8. doi: 10.1126/science.1253787. Epub 2014 Jun 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, Netherlands. Department of Physics and Astronomy, Universiteit Utrecht, Post Office Box 80000, 3508 TA Utrecht, Netherlands. Leiden Observatory, Leiden University, Post Office Box 9513, 2300 RA Leiden, Netherlands. j.kaastra@sron.nl. ; Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA. Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA. ; Istituto Nazionale di Astrofisica (INAF)-Istituto di Astrofisica Spaziale e Fisica Cosmica (IASF) Bologna, Via Gobetti 101, I-40129 Bologna, Italy. ; SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, Netherlands. Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT, UK. ; Universite Grenoble Alpes, Institut de Planetologie et d'Astrophysique de Grenoble (IPAG), F-38000 Grenoble, France. CNRS, IPAG, F-38000 Grenoble, France. ; Instituto de Astronomia, Universidad Catolica del Norte, Avenida Angamos 0610, Casilla 1280, Antofagasta, Chile. Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH, UK. ; Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA. ; Department of Physics, Technion-Israel Institute of Technology, 32000 Haifa, Israel. ; Dipartimento di Matematica e Fisica, Universita degli Studi Roma Tre, via della Vasca Navale 84, 00146 Roma, Italy. ; Department of Astronomy, University of Geneva, 16 Chemin d'Ecogia, 1290 Versoix, Switzerland. ; Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT, UK. ; SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, Netherlands. ; Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA. ; SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, Netherlands. European Space Astronomy Centre, Post Office Box 78, E-28691 Villanueva de la Canada, Madrid, Spain. ; Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA. ; Universite de Toulouse, Universite Paul Sabatier (UPS)-Observatoire Midi-Pyrenees (OMP), Institut de Recherche en Astrophysique et Planelogie (IRAP), Toulouse, France. CNRS, IRAP, 9 Avenue colonel Roche, BP 44346, 31028 Toulouse Cedex 4, France. ; Max-Planck-Institut fur extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching, Germany. ; 22 Impasse du Bois Joli, 74410 St. Jorioz, France. ; Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210, USA. Center for Cosmology and AstroParticle Physics, Ohio State University, 191 West Woodruff Avenue, Columbus, OH 43210, USA. ; Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK. ; Astronomisches Institut, Ruhr-Universitat Bochum, Universitatsstrasse 150, 44801, Bochum, Germany. ; INAF/Istituto di Astrofisica e Planetologia Spaziali, Via Fosso del Cavaliere 100, I-00133 Roma, Italy. ; Research Center for Measurement in Advanced Science, Faculty of Science, Rikkyo University 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, Japan. Department of Physics, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24994647" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-02-24
    Description: The evolution of galaxies is connected to the growth of supermassive black holes in their centers. During the quasar phase, a huge luminosity is released as matter falls onto the black hole, and radiation-driven winds can transfer most of this energy back to the host galaxy. Over five different epochs, we detected the signatures of a nearly spherical stream of highly ionized gas in the broadband x-ray spectra of the luminous quasar PDS 456. This persistent wind is expelled at relativistic speeds from the inner accretion disk, and its wide aperture suggests an effective coupling with the ambient gas. The outflow's kinetic power larger than 10(46) ergs per second is enough to provide the feedback required by models of black hole and host galaxy coevolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nardini, E -- Reeves, J N -- Gofford, J -- Harrison, F A -- Risaliti, G -- Braito, V -- Costa, M T -- Matzeu, G A -- Walton, D J -- Behar, E -- Boggs, S E -- Christensen, F E -- Craig, W W -- Hailey, C J -- Matt, G -- Miller, J M -- O'Brien, P T -- Stern, D -- Turner, T J -- Ward, M J -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):860-3. doi: 10.1126/science.1259202.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Astrophysics Group, School of Physical and Geographical Sciences, Keele University, Keele, Staffordshire ST5 5BG, UK. e.nardini@keele.ac.uk. ; Astrophysics Group, School of Physical and Geographical Sciences, Keele University, Keele, Staffordshire ST5 5BG, UK. Center for Space Science and Technology, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA. ; Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA. ; Istituto Nazionale di Astrofisica, Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125 Firenze, Italy. Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA. ; INAF, Osservatorio Astronomico di Brera, Via Bianchi 46, I-23807 Merate (LC), Italy. ; Astrophysics Group, School of Physical and Geographical Sciences, Keele University, Keele, Staffordshire ST5 5BG, UK. ; Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA. ; Department of Physics, Technion, Haifa 32000, Israel. ; Space Science Laboratory, University of California, Berkeley, CA 94720, USA. ; Danmarks Tekniske Universitet Space-National Space Institute, Technical University of Denmark, Elektrovej 327, 2800 Lyngby, Denmark. ; Lawrence Livermore National Laboratory, Livermore, CA 94550, USA. ; Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027, USA. ; Dipartimento di Matematica e Fisica, Universita degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma, Italy. ; Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA. ; Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK. ; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA. ; Physics Department, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA. Eureka Scientific Inc., 2452 Delmer Street Suite 100, Oakland, CA 94602, USA. ; Department of Physics, University of Durham, South Road, Durham DH1 3LE, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700515" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1434-6079
    Keywords: PACS. 34.80.Lx Electronion recombination and electron attachment
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract: Ab initio calculations of the total dielectronic recombination (DR) rate coefficient of Ni-like barium ( ) and tungsten ( ) in the ground state have been performed using the HULLAC atomic code package. Resonant and nonresonant stabilizing radiative transitions are included. Collisional transitions following electron capture are neglected. The present level-by-level calculations include the DR contributions of all of the levels (over 17000) in the Cu-like inner-shell excited configurations 3d 9 4ln'l' ( ), 3p 5 3d 10 4ln'l' ( ), and 3s3p 6 3d 10 4ln'l' ( ). For both ions, the configuration complexes with a hole in the 3p inner shell contribute almost 10% to the total DR rate coefficient, while the complexes with a hole in the 3s inner shell contribute about 1%. The converging contributions of the 3d 9 4ln'l' (n' 〉 9) configurations are evaluated by applying the complex-by-complex extrapolation method and are found to comprise up to about 20% of the total DR rate coefficients throughout a wide electron temperature range. The total DR rate coefficients are fitted to an easy-to-use analytic expression which reproduces the original data with an accuracy of about 2% or better in a very wide temperature range.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...