Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-04-02
    Description: In the context of most induced pluripotent stem (iPS) cell reprogramming methods, heterogeneous populations of non-productive and staggered productive intermediates arise at different reprogramming time points. Despite recent reports claiming substantially increased reprogramming efficiencies using genetically modified donor cells, prospectively isolating distinct reprogramming intermediates remains an important goal to decipher reprogramming mechanisms. Previous attempts to identify surface markers of intermediate cell populations were based on the assumption that, during reprogramming, cells progressively lose donor cell identity and gradually acquire iPS cell properties. Here we report that iPS cell and epithelial markers, such as SSEA1 and EpCAM, respectively, are not predictive of reprogramming during early phases. Instead, in a systematic functional surface marker screen, we find that early reprogramming-prone cells express a unique set of surface markers, including CD73, CD49d and CD200, that are absent in both fibroblasts and iPS cells. Single-cell mass cytometry and prospective isolation show that these distinct intermediates are transient and bridge the gap between donor cell silencing and pluripotency marker acquisition during the early, presumably stochastic, reprogramming phase. Expression profiling reveals early upregulation of the transcriptional regulators Nr0b1 and Etv5 in this reprogramming state, preceding activation of key pluripotency regulators such as Rex1 (also known as Zfp42), Dppa2, Nanog and Sox2. Both factors are required for the generation of the early intermediate state and fully reprogrammed iPS cells, and thus represent some of the earliest known regulators of iPS cell induction. Our study deconvolutes the first steps in a hierarchical series of events that lead to pluripotency acquisition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4441548/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4441548/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lujan, Ernesto -- Zunder, Eli R -- Ng, Yi Han -- Goronzy, Isabel N -- Nolan, Garry P -- Wernig, Marius -- F32 GM093508-01/GM/NIGMS NIH HHS/ -- RC4 NS073015/NS/NINDS NIH HHS/ -- England -- Nature. 2015 May 21;521(7552):352-6. doi: 10.1038/nature14274. Epub 2015 Apr 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California 94305, USA [2] Department of Genetics, Stanford University, Stanford, California 94305, USA [3] Department of Pathology, Stanford University, Stanford, California 94305, USA. ; Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, California 94305, USA. ; 1] Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California 94305, USA [2] Department of Pathology, Stanford University, Stanford, California 94305, USA [3] Department of Microbiology and Immunology, Stanford University, Stanford, California 94305, USA. ; 1] Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California 94305, USA [2] Department of Pathology, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25830878" target="_blank"〉PubMed〈/a〉
    Keywords: 5'-Nucleotidase/metabolism ; Animals ; Antigens, CD/metabolism ; Antigens, CD15/metabolism ; Antigens, Neoplasm/metabolism ; Biomarkers/analysis/metabolism ; Cell Adhesion Molecules/metabolism ; *Cell Separation ; Cellular Reprogramming/*physiology ; DAX-1 Orphan Nuclear Receptor/metabolism ; DNA-Binding Proteins/metabolism ; Epithelial Cells/metabolism ; Fibroblasts/cytology/metabolism ; *Flow Cytometry ; Gene Expression Profiling ; Homeodomain Proteins/metabolism ; Induced Pluripotent Stem Cells/*cytology/*metabolism ; Integrin alpha4/metabolism ; Mice ; Nuclear Proteins/metabolism ; SOXB1 Transcription Factors/metabolism ; Time Factors ; Transcription Factors/analysis/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-07-15
    Description: Immune cells function in an interacting hierarchy that coordinates the activities of various cell types according to genetic and environmental contexts. We developed graphical approaches to construct an extensible immune reference map from mass cytometry data of cells from different organs, incorporating landmark cell populations as flags on the map to compare cells from distinct samples. The maps recapitulated canonical cellular phenotypes and revealed reproducible, tissue-specific deviations. The approach revealed influences of genetic variation and circadian rhythms on immune system structure, enabled direct comparisons of murine and human blood cell phenotypes, and even enabled archival fluorescence-based flow cytometry data to be mapped onto the reference framework. This foundational reference map provides a working definition of systemic immune organization to which new data can be integrated to reveal deviations driven by genetics, environment, or pathology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537647/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537647/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Spitzer, Matthew H -- Gherardini, Pier Federico -- Fragiadakis, Gabriela K -- Bhattacharya, Nupur -- Yuan, Robert T -- Hotson, Andrew N -- Finck, Rachel -- Carmi, Yaron -- Zunder, Eli R -- Fantl, Wendy J -- Bendall, Sean C -- Engleman, Edgar G -- Nolan, Garry P -- 1R01CA130826/CA/NCI NIH HHS/ -- 1R01GM109836/GM/NIGMS NIH HHS/ -- 1R01NS089533/NS/NINDS NIH HHS/ -- 1U19AI100627/AI/NIAID NIH HHS/ -- 201303028/PHS HHS/ -- 5-24927/PHS HHS/ -- 5R01AI073724/AI/NIAID NIH HHS/ -- 5U54CA143907/CA/NCI NIH HHS/ -- 7500108142/PHS HHS/ -- F31 CA189331/CA/NCI NIH HHS/ -- F31CA189331/CA/NCI NIH HHS/ -- F32 GM093508/GM/NIGMS NIH HHS/ -- F32 GM093508-01/GM/NIGMS NIH HHS/ -- HHSF223201210194C/PHS HHS/ -- HHSN268201000034C/HV/NHLBI NIH HHS/ -- HHSN272200700038C/AI/NIAID NIH HHS/ -- HHSN272200700038C/PHS HHS/ -- HHSN272201200028C/PHS HHS/ -- K99 GM104148/GM/NIGMS NIH HHS/ -- K99GM104148-01/GM/NIGMS NIH HHS/ -- N01-HV-00242/HV/NHLBI NIH HHS/ -- P01 CA034233/CA/NCI NIH HHS/ -- P01 CA034233-22A1/CA/NCI NIH HHS/ -- PN2 EY018228/EY/NEI NIH HHS/ -- PN2EY018228 0158 G KB065/EY/NEI NIH HHS/ -- R01 AI073724/AI/NIAID NIH HHS/ -- R01 CA130826/CA/NCI NIH HHS/ -- R01 CA184968/CA/NCI NIH HHS/ -- R01 GM109836/GM/NIGMS NIH HHS/ -- R01 NS089533/NS/NINDS NIH HHS/ -- R01CA184968/CA/NCI NIH HHS/ -- R33 CA183654/CA/NCI NIH HHS/ -- R33 CA183692/CA/NCI NIH HHS/ -- RFA CA 09-009/CA/NCI NIH HHS/ -- RFA CA 09-011/CA/NCI NIH HHS/ -- T32 GM007276/GM/NIGMS NIH HHS/ -- T32GM007276/GM/NIGMS NIH HHS/ -- U19 AI057229/AI/NIAID NIH HHS/ -- U19 AI100627/AI/NIAID NIH HHS/ -- U54 CA149145/CA/NCI NIH HHS/ -- U54CA149145/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Jul 10;349(6244):1259425. doi: 10.1126/science.1259425.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA. Department of Pathology, Stanford University, Stanford, CA 94305, USA. Program in Immunology, Stanford University, Stanford, CA 94305, USA. gnolan@stanford.edu matthew.spitzer@stanford.edu. ; Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA. ; Department of Pathology, Stanford University, Stanford, CA 94305, USA. ; Department of Pathology, Stanford University, Stanford, CA 94305, USA. Program in Immunology, Stanford University, Stanford, CA 94305, USA. ; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Stanford University, Stanford, CA 94305, USA. ; Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA. Program in Immunology, Stanford University, Stanford, CA 94305, USA. gnolan@stanford.edu matthew.spitzer@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26160952" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Marrow/immunology ; Circadian Rhythm/immunology ; Flow Cytometry ; Genetic Variation ; Humans ; Immune System/*cytology/*immunology ; Mice ; Mice, Inbred C57BL ; Models, Biological ; Phenotype ; Reference Standards
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-07-24
    Description: Recent studies suggest that autism is often associated with dysregulated immune responses and altered microbiota composition. This has led to growing speculation about potential roles for hyperactive immune responses and the microbiome in autism. Yet how microbiome–immune cross-talk contributes to neurodevelopmental disorders currently remains poorly understood. In this study, we report critical roles for prenatal microbiota composition in the development of behavioral abnormalities in a murine maternal immune activation (MIA) model of autism that is driven by the viral mimetic polyinosinic-polycytidylic acid. We show that preconception microbiota transplantation can transfer susceptibility to MIA-associated neurodevelopmental disease and that this is associated with modulation of the maternal immune response. Furthermore, we find that ablation of IL-17a signaling provides protection against the development of neurodevelopmental abnormalities in MIA offspring. Our findings suggest that microbiota landscape can influence MIA-induced neurodevelopmental disease pathogenesis and that this occurs as a result of microflora-associated calibration of gestational IL-17a responses.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...