Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-09-02
    Description: The evolution of the amniotic egg was one of the great evolutionary innovations in the history of life, freeing vertebrates from an obligatory connection to water and thus permitting the conquest of terrestrial environments. Among amniotes, genome sequences are available for mammals and birds, but not for non-avian reptiles. Here we report the genome sequence of the North American green anole lizard, Anolis carolinensis. We find that A. carolinensis microchromosomes are highly syntenic with chicken microchromosomes, yet do not exhibit the high GC and low repeat content that are characteristic of avian microchromosomes. Also, A. carolinensis mobile elements are very young and diverse-more so than in any other sequenced amniote genome. The GC content of this lizard genome is also unusual in its homogeneity, unlike the regionally variable GC content found in mammals and birds. We describe and assign sequence to the previously unknown A. carolinensis X chromosome. Comparative gene analysis shows that amniote egg proteins have evolved significantly more rapidly than other proteins. An anole phylogeny resolves basal branches to illuminate the history of their repeated adaptive radiations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3184186/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3184186/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alfoldi, Jessica -- Di Palma, Federica -- Grabherr, Manfred -- Williams, Christina -- Kong, Lesheng -- Mauceli, Evan -- Russell, Pamela -- Lowe, Craig B -- Glor, Richard E -- Jaffe, Jacob D -- Ray, David A -- Boissinot, Stephane -- Shedlock, Andrew M -- Botka, Christopher -- Castoe, Todd A -- Colbourne, John K -- Fujita, Matthew K -- Moreno, Ricardo Godinez -- ten Hallers, Boudewijn F -- Haussler, David -- Heger, Andreas -- Heiman, David -- Janes, Daniel E -- Johnson, Jeremy -- de Jong, Pieter J -- Koriabine, Maxim Y -- Lara, Marcia -- Novick, Peter A -- Organ, Chris L -- Peach, Sally E -- Poe, Steven -- Pollock, David D -- de Queiroz, Kevin -- Sanger, Thomas -- Searle, Steve -- Smith, Jeremy D -- Smith, Zachary -- Swofford, Ross -- Turner-Maier, Jason -- Wade, Juli -- Young, Sarah -- Zadissa, Amonida -- Edwards, Scott V -- Glenn, Travis C -- Schneider, Christopher J -- Losos, Jonathan B -- Lander, Eric S -- Breen, Matthew -- Ponting, Chris P -- Lindblad-Toh, Kerstin -- BB/F007590/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- MC_U137761446/Medical Research Council/United Kingdom -- U54 HG003067/HG/NHGRI NIH HHS/ -- U54 HG003067-08/HG/NHGRI NIH HHS/ -- England -- Nature. 2011 Aug 31;477(7366):587-91. doi: 10.1038/nature10390.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. jalfoldi@broadinstitute.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21881562" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Birds/*genetics ; Chickens/genetics ; *Evolution, Molecular ; GC Rich Sequence/genetics ; Genome/*genetics ; Genomics ; Humans ; Lizards/*genetics ; Mammals/*genetics ; Molecular Sequence Data ; Phylogeny ; Synteny/genetics ; X Chromosome/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-06-23
    Description: Breast carcinoma is the leading cause of cancer-related mortality in women worldwide, with an estimated 1.38 million new cases and 458,000 deaths in 2008 alone. This malignancy represents a heterogeneous group of tumours with characteristic molecular features, prognosis and responses to available therapy. Recurrent somatic alterations in breast cancer have been described, including mutations and copy number alterations, notably ERBB2 amplifications, the first successful therapy target defined by a genomic aberration. Previous DNA sequencing studies of breast cancer genomes have revealed additional candidate mutations and gene rearrangements. Here we report the whole-exome sequences of DNA from 103 human breast cancers of diverse subtypes from patients in Mexico and Vietnam compared to matched-normal DNA, together with whole-genome sequences of 22 breast cancer/normal pairs. Beyond confirming recurrent somatic mutations in PIK3CA, TP53, AKT1, GATA3 and MAP3K1, we discovered recurrent mutations in the CBFB transcription factor gene and deletions of its partner RUNX1. Furthermore, we have identified a recurrent MAGI3-AKT3 fusion enriched in triple-negative breast cancer lacking oestrogen and progesterone receptors and ERBB2 expression. The MAGI3-AKT3 fusion leads to constitutive activation of AKT kinase, which is abolished by treatment with an ATP-competitive AKT small-molecule inhibitor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4148686/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4148686/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Banerji, Shantanu -- Cibulskis, Kristian -- Rangel-Escareno, Claudia -- Brown, Kristin K -- Carter, Scott L -- Frederick, Abbie M -- Lawrence, Michael S -- Sivachenko, Andrey Y -- Sougnez, Carrie -- Zou, Lihua -- Cortes, Maria L -- Fernandez-Lopez, Juan C -- Peng, Shouyong -- Ardlie, Kristin G -- Auclair, Daniel -- Bautista-Pina, Veronica -- Duke, Fujiko -- Francis, Joshua -- Jung, Joonil -- Maffuz-Aziz, Antonio -- Onofrio, Robert C -- Parkin, Melissa -- Pho, Nam H -- Quintanar-Jurado, Valeria -- Ramos, Alex H -- Rebollar-Vega, Rosa -- Rodriguez-Cuevas, Sergio -- Romero-Cordoba, Sandra L -- Schumacher, Steven E -- Stransky, Nicolas -- Thompson, Kristin M -- Uribe-Figueroa, Laura -- Baselga, Jose -- Beroukhim, Rameen -- Polyak, Kornelia -- Sgroi, Dennis C -- Richardson, Andrea L -- Jimenez-Sanchez, Gerardo -- Lander, Eric S -- Gabriel, Stacey B -- Garraway, Levi A -- Golub, Todd R -- Melendez-Zajgla, Jorge -- Toker, Alex -- Getz, Gad -- Hidalgo-Miranda, Alfredo -- Meyerson, Matthew -- CA089393/CA/NCI NIH HHS/ -- CA122099/CA/NCI NIH HHS/ -- R01 CA122099/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Jun 20;486(7403):405-9. doi: 10.1038/nature11154.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22722202" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Breast Neoplasms/*classification/*genetics/pathology ; Core Binding Factor Alpha 2 Subunit/genetics ; Core Binding Factor beta Subunit/genetics ; DNA Mutational Analysis ; Exome/genetics ; Female ; Gene Fusion/genetics ; Humans ; Membrane Proteins/genetics ; Mexico ; Mutation/*genetics ; Proto-Oncogene Proteins c-akt/antagonists & inhibitors/genetics/metabolism ; Translocation, Genetic/*genetics ; Vietnam
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-01-07
    Description: Although a few cancer genes are mutated in a high proportion of tumours of a given type (〉20%), most are mutated at intermediate frequencies (2-20%). To explore the feasibility of creating a comprehensive catalogue of cancer genes, we analysed somatic point mutations in exome sequences from 4,742 human cancers and their matched normal-tissue samples across 21 cancer types. We found that large-scale genomic analysis can identify nearly all known cancer genes in these tumour types. Our analysis also identified 33 genes that were not previously known to be significantly mutated in cancer, including genes related to proliferation, apoptosis, genome stability, chromatin regulation, immune evasion, RNA processing and protein homeostasis. Down-sampling analysis indicates that larger sample sizes will reveal many more genes mutated at clinically important frequencies. We estimate that near-saturation may be achieved with 600-5,000 samples per tumour type, depending on background mutation frequency. The results may help to guide the next stage of cancer genomics.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4048962/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4048962/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lawrence, Michael S -- Stojanov, Petar -- Mermel, Craig H -- Robinson, James T -- Garraway, Levi A -- Golub, Todd R -- Meyerson, Matthew -- Gabriel, Stacey B -- Lander, Eric S -- Getz, Gad -- R01 CA157304/CA/NCI NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- U54 HG003067/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jan 23;505(7484):495-501. doi: 10.1038/nature12912. Epub 2014 Jan 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA. ; 1] Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA [2] Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, USA. ; 1] Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA [2] Massachusetts General Hospital, Cancer Center and Department of Pathology, 55 Fruit Street, Boston, Massachusetts 02114, USA. ; 1] Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA [2] Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, USA [3] Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, USA. ; 1] Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA [2] Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, USA [3] Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, USA [4] Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815, USA. ; 1] Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA [2] Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, USA [3] Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA [4]. ; 1] Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA [2] Massachusetts General Hospital, Cancer Center and Department of Pathology, 55 Fruit Street, Boston, Massachusetts 02114, USA [3] Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, USA [4].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24390350" target="_blank"〉PubMed〈/a〉
    Keywords: Apoptosis/genetics ; Case-Control Studies ; Cell Proliferation ; Chromatin/genetics ; DNA Mutational Analysis ; Exome/genetics ; Genes, Neoplasm/*genetics ; Genome, Human/genetics ; Genomic Instability/genetics ; Genomics ; Humans ; Immune Evasion/genetics ; Mutation Rate ; Neoplasms/*classification/*genetics/pathology ; Point Mutation/genetics ; RNA Processing, Post-Transcriptional/genetics ; Sample Size
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-02-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lander, Eric S -- New York, N.Y. -- Science. 2011 Feb 25;331(6020):1024. doi: 10.1126/science.1204037.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of Harvard and MIT, Cambridge, MA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21350161" target="_blank"〉PubMed〈/a〉
    Keywords: *Genetic Research ; *Genome, Human ; *Human Genome Project ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-03-06
    Description: Generation of induced pluripotent stem cells (iPSCs) by somatic cell reprogramming involves global epigenetic remodelling. Whereas several proteins are known to regulate chromatin marks associated with the distinct epigenetic states of cells before and after reprogramming, the role of specific chromatin-modifying enzymes in reprogramming remains to be determined. To address how chromatin-modifying proteins influence reprogramming, we used short hairpin RNAs (shRNAs) to target genes in DNA and histone methylation pathways, and identified positive and negative modulators of iPSC generation. Whereas inhibition of the core components of the polycomb repressive complex 1 and 2, including the histone 3 lysine 27 methyltransferase EZH2, reduced reprogramming efficiency, suppression of SUV39H1, YY1 and DOT1L enhanced reprogramming. Specifically, inhibition of the H3K79 histone methyltransferase DOT1L by shRNA or a small molecule accelerated reprogramming, significantly increased the yield of iPSC colonies, and substituted for KLF4 and c-Myc (also known as MYC). Inhibition of DOT1L early in the reprogramming process is associated with a marked increase in two alternative factors, NANOG and LIN28, which play essential functional roles in the enhancement of reprogramming. Genome-wide analysis of H3K79me2 distribution revealed that fibroblast-specific genes associated with the epithelial to mesenchymal transition lose H3K79me2 in the initial phases of reprogramming. DOT1L inhibition facilitates the loss of this mark from genes that are fated to be repressed in the pluripotent state. These findings implicate specific chromatin-modifying enzymes as barriers to or facilitators of reprogramming, and demonstrate how modulation of chromatin-modifying enzymes can be exploited to more efficiently generate iPSCs with fewer exogenous transcription factors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3501145/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3501145/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Onder, Tamer T -- Kara, Nergis -- Cherry, Anne -- Sinha, Amit U -- Zhu, Nan -- Bernt, Kathrin M -- Cahan, Patrick -- Marcarci, B Ogan -- Unternaehrer, Juli -- Gupta, Piyush B -- Lander, Eric S -- Armstrong, Scott A -- Daley, George Q -- CA140575/CA/NCI NIH HHS/ -- R24 DK092760/DK/NIDDK NIH HHS/ -- U01 HL100001/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Mar 4;483(7391):598-602. doi: 10.1038/nature10953.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Manton Center for Orphan Disease Research, Children's Hospital Boston and Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22388813" target="_blank"〉PubMed〈/a〉
    Keywords: *Cellular Reprogramming/genetics ; Chromatin/genetics/*metabolism ; DNA Methylation/genetics ; DNA-Binding Proteins/antagonists & inhibitors/metabolism ; Fibroblasts/cytology/metabolism ; Histones/metabolism ; Homeodomain Proteins/metabolism ; Humans ; Induced Pluripotent Stem Cells/*cytology/*metabolism ; Kruppel-Like Transcription Factors/metabolism ; Methylation ; Methyltransferases/antagonists & inhibitors/biosynthesis/genetics/metabolism ; Polycomb Repressive Complex 2 ; Polycomb-Group Proteins ; Proto-Oncogene Proteins c-myc/metabolism ; RNA, Small Interfering ; RNA-Binding Proteins/metabolism ; Repressor Proteins/antagonists & inhibitors/metabolism ; Transcription Factors/antagonists & inhibitors/metabolism ; YY1 Transcription Factor/antagonists & inhibitors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-09-05
    Description: Cichlid fishes are famous for large, diverse and replicated adaptive radiations in the Great Lakes of East Africa. To understand the molecular mechanisms underlying cichlid phenotypic diversity, we sequenced the genomes and transcriptomes of five lineages of African cichlids: the Nile tilapia (Oreochromis niloticus), an ancestral lineage with low diversity; and four members of the East African lineage: Neolamprologus brichardi/pulcher (older radiation, Lake Tanganyika), Metriaclima zebra (recent radiation, Lake Malawi), Pundamilia nyererei (very recent radiation, Lake Victoria), and Astatotilapia burtoni (riverine species around Lake Tanganyika). We found an excess of gene duplications in the East African lineage compared to tilapia and other teleosts, an abundance of non-coding element divergence, accelerated coding sequence evolution, expression divergence associated with transposable element insertions, and regulation by novel microRNAs. In addition, we analysed sequence data from sixty individuals representing six closely related species from Lake Victoria, and show genome-wide diversifying selection on coding and regulatory variants, some of which were recruited from ancient polymorphisms. We conclude that a number of molecular mechanisms shaped East African cichlid genomes, and that amassing of standing variation during periods of relaxed purifying selection may have been important in facilitating subsequent evolutionary diversification.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4353498/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4353498/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brawand, David -- Wagner, Catherine E -- Li, Yang I -- Malinsky, Milan -- Keller, Irene -- Fan, Shaohua -- Simakov, Oleg -- Ng, Alvin Y -- Lim, Zhi Wei -- Bezault, Etienne -- Turner-Maier, Jason -- Johnson, Jeremy -- Alcazar, Rosa -- Noh, Hyun Ji -- Russell, Pamela -- Aken, Bronwen -- Alfoldi, Jessica -- Amemiya, Chris -- Azzouzi, Naoual -- Baroiller, Jean-Francois -- Barloy-Hubler, Frederique -- Berlin, Aaron -- Bloomquist, Ryan -- Carleton, Karen L -- Conte, Matthew A -- D'Cotta, Helena -- Eshel, Orly -- Gaffney, Leslie -- Galibert, Francis -- Gante, Hugo F -- Gnerre, Sante -- Greuter, Lucie -- Guyon, Richard -- Haddad, Natalie S -- Haerty, Wilfried -- Harris, Rayna M -- Hofmann, Hans A -- Hourlier, Thibaut -- Hulata, Gideon -- Jaffe, David B -- Lara, Marcia -- Lee, Alison P -- MacCallum, Iain -- Mwaiko, Salome -- Nikaido, Masato -- Nishihara, Hidenori -- Ozouf-Costaz, Catherine -- Penman, David J -- Przybylski, Dariusz -- Rakotomanga, Michaelle -- Renn, Suzy C P -- Ribeiro, Filipe J -- Ron, Micha -- Salzburger, Walter -- Sanchez-Pulido, Luis -- Santos, M Emilia -- Searle, Steve -- Sharpe, Ted -- Swofford, Ross -- Tan, Frederick J -- Williams, Louise -- Young, Sarah -- Yin, Shuangye -- Okada, Norihiro -- Kocher, Thomas D -- Miska, Eric A -- Lander, Eric S -- Venkatesh, Byrappa -- Fernald, Russell D -- Meyer, Axel -- Ponting, Chris P -- Streelman, J Todd -- Lindblad-Toh, Kerstin -- Seehausen, Ole -- Di Palma, Federica -- 2R01DE019637-04/DE/NIDCR NIH HHS/ -- F30 DE023013/DE/NIDCR NIH HHS/ -- MC_U137761446/Medical Research Council/United Kingdom -- R01 DE019637/DE/NIDCR NIH HHS/ -- R01 NS034950/NS/NINDS NIH HHS/ -- U54 HG002045/HG/NHGRI NIH HHS/ -- Wellcome Trust/United Kingdom -- England -- Nature. 2014 Sep 18;513(7518):375-81. doi: 10.1038/nature13726. Epub 2014 Sep 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] MRC Functional Genomics Unit, University of Oxford, Oxford OX1 3QX, UK [3]. ; 1] Department of Fish Ecology and Evolution, Eawag Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution &Biogeochemistry, CH-6047 Kastanienbaum, Switzerland [2] Division of Aquatic Ecology, Institute of Ecology &Evolution, University of Bern, CH-3012 Bern, Switzerland [3]. ; 1] MRC Functional Genomics Unit, University of Oxford, Oxford OX1 3QX, UK [2]. ; 1] Gurdon Institute, Cambridge CB2 1QN, UK [2] Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK. ; Division of Aquatic Ecology, Institute of Ecology &Evolution, University of Bern, CH-3012 Bern, Switzerland. ; Department of Biology, University of Konstanz, D-78457 Konstanz, Germany. ; 1] Department of Biology, University of Konstanz, D-78457 Konstanz, Germany [2] European Molecular Biology Laboratory, 69117 Heidelberg, Germany. ; Institute of Molecular and Cell Biology, A*STAR, 138673 Singapore. ; Department of Biology, Reed College, Portland, Oregon 97202, USA. ; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; Biology Department, Stanford University, Stanford, California 94305-5020, USA. ; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA. ; Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK. ; Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101, USA. ; Institut Genetique et Developpement, CNRS/University of Rennes, 35043 Rennes, France. ; CIRAD, Campus International de Baillarguet, TA B-110/A, 34398 Montpellier cedex 5, France. ; School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA. ; Department of Biology, University of Maryland, College Park, Maryland 20742, USA. ; Animal Genetics, Institute of Animal Science, ARO, The Volcani Center, Bet-Dagan, 50250 Israel. ; Zoological Institute, University of Basel, CH-4051 Basel, Switzerland. ; 1] Department of Fish Ecology and Evolution, Eawag Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution &Biogeochemistry, CH-6047 Kastanienbaum, Switzerland [2] Division of Aquatic Ecology, Institute of Ecology &Evolution, University of Bern, CH-3012 Bern, Switzerland. ; MRC Functional Genomics Unit, University of Oxford, Oxford OX1 3QX, UK. ; Department of Integrative Biology, Center for Computational Biology and Bioinformatics; The University of Texas at Austin, Austin, Texas 78712, USA. ; Department of Fish Ecology and Evolution, Eawag Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution &Biogeochemistry, CH-6047 Kastanienbaum, Switzerland. ; Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, 226-8501 Yokohama, Japan. ; Systematique, Adaptation, Evolution, National Museum of Natural History, 75005 Paris, France. ; Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK. ; Carnegie Institution of Washington, Department of Embryology, 3520 San Martin Drive Baltimore, Maryland 21218, USA. ; 1] Department of Biological Sciences, Tokyo Institute of Technology, Tokyo, 226-8501 Yokohama, Japan [2] National Cheng Kung University, Tainan City, 704 Taiwan. ; Gurdon Institute, Cambridge CB2 1QN, UK. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Vertebrate and Health Genomics, The Genome Analysis Centre, Norwich NR18 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25186727" target="_blank"〉PubMed〈/a〉
    Keywords: Africa, Eastern ; Animals ; Cichlids/*classification/*genetics ; DNA Transposable Elements/genetics ; *Evolution, Molecular ; Gene Duplication/genetics ; Gene Expression Regulation/genetics ; *Genetic Speciation ; Genome/*genetics ; Genomics ; Lakes ; MicroRNAs/genetics ; Phylogeny ; Polymorphism, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-04-29
    Description: Many long non-coding RNAs (lncRNAs) affect gene expression, but the mechanisms by which they act are still largely unknown. One of the best-studied lncRNAs is Xist, which is required for transcriptional silencing of one X chromosome during development in female mammals. Despite extensive efforts to define the mechanism of Xist-mediated transcriptional silencing, we still do not know any proteins required for this role. The main challenge is that there are currently no methods to comprehensively define the proteins that directly interact with a lncRNA in the cell. Here we develop a method to purify a lncRNA from cells and identify proteins interacting with it directly using quantitative mass spectrometry. We identify ten proteins that specifically associate with Xist, three of these proteins--SHARP, SAF-A and LBR--are required for Xist-mediated transcriptional silencing. We show that SHARP, which interacts with the SMRT co-repressor that activates HDAC3, is not only essential for silencing, but is also required for the exclusion of RNA polymerase II (Pol II) from the inactive X. Both SMRT and HDAC3 are also required for silencing and Pol II exclusion. In addition to silencing transcription, SHARP and HDAC3 are required for Xist-mediated recruitment of the polycomb repressive complex 2 (PRC2) across the X chromosome. Our results suggest that Xist silences transcription by directly interacting with SHARP, recruiting SMRT, activating HDAC3, and deacetylating histones to exclude Pol II across the X chromosome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4516396/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4516396/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McHugh, Colleen A -- Chen, Chun-Kan -- Chow, Amy -- Surka, Christine F -- Tran, Christina -- McDonel, Patrick -- Pandya-Jones, Amy -- Blanco, Mario -- Burghard, Christina -- Moradian, Annie -- Sweredoski, Michael J -- Shishkin, Alexander A -- Su, Julia -- Lander, Eric S -- Hess, Sonja -- Plath, Kathrin -- Guttman, Mitchell -- 1S10RR029591-01A1/RR/NCRR NIH HHS/ -- DP2 OD001686/OD/NIH HHS/ -- DP5 OD012190/OD/NIH HHS/ -- DP5OD012190/OD/NIH HHS/ -- T32GM07616/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 May 14;521(7551):232-6. doi: 10.1038/nature14443. Epub 2015 Apr 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA. ; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, USA. ; 1] Department of Biological Chemistry, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095, USA [2] Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA. ; Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25915022" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Cell Line ; Embryonic Stem Cells/enzymology/metabolism ; Female ; *Gene Silencing ; Heterogeneous-Nuclear Ribonucleoprotein U/metabolism ; Histone Deacetylases/*metabolism ; Histones/metabolism ; Male ; Mass Spectrometry/*methods ; Mice ; Nuclear Proteins/*metabolism ; Nuclear Receptor Co-Repressor 2/metabolism ; Polycomb Repressive Complex 2/metabolism ; Protein Binding ; RNA Polymerase II/metabolism ; RNA, Long Noncoding/genetics/*metabolism ; RNA-Binding Proteins/analysis/metabolism ; Receptors, Cytoplasmic and Nuclear/metabolism ; Transcription, Genetic/*genetics ; X Chromosome/*genetics/metabolism ; X Chromosome Inactivation/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-07-30
    Description: Head and neck squamous cell carcinoma (HNSCC) is a common, morbid, and frequently lethal malignancy. To uncover its mutational spectrum, we analyzed whole-exome sequencing data from 74 tumor-normal pairs. The majority exhibited a mutational profile consistent with tobacco exposure; human papillomavirus was detectable by sequencing DNA from infected tumors. In addition to identifying previously known HNSCC genes (TP53, CDKN2A, PTEN, PIK3CA, and HRAS), our analysis revealed many genes not previously implicated in this malignancy. At least 30% of cases harbored mutations in genes that regulate squamous differentiation (for example, NOTCH1, IRF6, and TP63), implicating its dysregulation as a major driver of HNSCC carcinogenesis. More generally, the results indicate the ability of large-scale sequencing to reveal fundamental tumorigenic mechanisms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3415217/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3415217/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stransky, Nicolas -- Egloff, Ann Marie -- Tward, Aaron D -- Kostic, Aleksandar D -- Cibulskis, Kristian -- Sivachenko, Andrey -- Kryukov, Gregory V -- Lawrence, Michael S -- Sougnez, Carrie -- McKenna, Aaron -- Shefler, Erica -- Ramos, Alex H -- Stojanov, Petar -- Carter, Scott L -- Voet, Douglas -- Cortes, Maria L -- Auclair, Daniel -- Berger, Michael F -- Saksena, Gordon -- Guiducci, Candace -- Onofrio, Robert C -- Parkin, Melissa -- Romkes, Marjorie -- Weissfeld, Joel L -- Seethala, Raja R -- Wang, Lin -- Rangel-Escareno, Claudia -- Fernandez-Lopez, Juan Carlos -- Hidalgo-Miranda, Alfredo -- Melendez-Zajgla, Jorge -- Winckler, Wendy -- Ardlie, Kristin -- Gabriel, Stacey B -- Meyerson, Matthew -- Lander, Eric S -- Getz, Gad -- Golub, Todd R -- Garraway, Levi A -- Grandis, Jennifer R -- P50 CA097190/CA/NCI NIH HHS/ -- R01 CA077308/CA/NCI NIH HHS/ -- R01 CA098372/CA/NCI NIH HHS/ -- UL1 TR000005/TR/NCATS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Aug 26;333(6046):1157-60. doi: 10.1126/science.1208130. Epub 2011 Jul 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21798893" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Apoptosis ; Carcinoma/*genetics/metabolism/virology ; Carcinoma, Squamous Cell ; Cell Differentiation ; Exons ; Head and Neck Neoplasms/*genetics/metabolism/virology ; Humans ; *Mutation ; Neoplasms, Squamous Cell/*genetics/metabolism/virology ; Papillomaviridae/isolation & purification ; Papillomavirus Infections/virology ; Point Mutation ; Receptor, Notch1/*genetics/metabolism ; *Sequence Analysis, DNA ; Sequence Deletion ; Signal Transduction ; Smoking ; Tobacco
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-12-18
    Description: The bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system for genome editing has greatly expanded the toolbox for mammalian genetics, enabling the rapid generation of isogenic cell lines and mice with modified alleles. Here, we describe a pooled, loss-of-function genetic screening approach suitable for both positive and negative selection that uses a genome-scale lentiviral single-guide RNA (sgRNA) library. sgRNA expression cassettes were stably integrated into the genome, which enabled a complex mutant pool to be tracked by massively parallel sequencing. We used a library containing 73,000 sgRNAs to generate knockout collections and performed screens in two human cell lines. A screen for resistance to the nucleotide analog 6-thioguanine identified all expected members of the DNA mismatch repair pathway, whereas another for the DNA topoisomerase II (TOP2A) poison etoposide identified TOP2A, as expected, and also cyclin-dependent kinase 6, CDK6. A negative selection screen for essential genes identified numerous gene sets corresponding to fundamental processes. Last, we show that sgRNA efficiency is associated with specific sequence motifs, enabling the prediction of more effective sgRNAs. Collectively, these results establish Cas9/sgRNA screens as a powerful tool for systematic genetic analysis in mammalian cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3972032/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3972032/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Tim -- Wei, Jenny J -- Sabatini, David M -- Lander, Eric S -- 2U54HG003067-10/HG/NHGRI NIH HHS/ -- CA103866/CA/NCI NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- U54 HG003067/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2014 Jan 3;343(6166):80-4. doi: 10.1126/science.1246981. Epub 2013 Dec 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24336569" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Neoplasm/genetics ; Antimetabolites, Antineoplastic/pharmacology ; Antineoplastic Agents, Phytogenic/pharmacology ; Caspase 9/*genetics ; *Clustered Regularly Interspaced Short Palindromic Repeats ; DNA Mismatch Repair/genetics ; DNA Topoisomerases, Type II/genetics ; DNA-Binding Proteins/antagonists & inhibitors/genetics ; Drug Resistance, Neoplasm/genetics ; Etoposide/pharmacology ; *Gene Knockout Techniques ; Gene Library ; *Genetic Testing ; Genome-Wide Association Study/*methods ; Humans ; RNA/*genetics ; Thioguanine/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-03-25
    Description: Multiple myeloma is an incurable malignancy of plasma cells, and its pathogenesis is poorly understood. Here we report the massively parallel sequencing of 38 tumour genomes and their comparison to matched normal DNAs. Several new and unexpected oncogenic mechanisms were suggested by the pattern of somatic mutation across the data set. These include the mutation of genes involved in protein translation (seen in nearly half of the patients), genes involved in histone methylation, and genes involved in blood coagulation. In addition, a broader than anticipated role of NF-kappaB signalling was indicated by mutations in 11 members of the NF-kappaB pathway. Of potential immediate clinical relevance, activating mutations of the kinase BRAF were observed in 4% of patients, suggesting the evaluation of BRAF inhibitors in multiple myeloma clinical trials. These results indicate that cancer genome sequencing of large collections of samples will yield new insights into cancer not anticipated by existing knowledge.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3560292/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3560292/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chapman, Michael A -- Lawrence, Michael S -- Keats, Jonathan J -- Cibulskis, Kristian -- Sougnez, Carrie -- Schinzel, Anna C -- Harview, Christina L -- Brunet, Jean-Philippe -- Ahmann, Gregory J -- Adli, Mazhar -- Anderson, Kenneth C -- Ardlie, Kristin G -- Auclair, Daniel -- Baker, Angela -- Bergsagel, P Leif -- Bernstein, Bradley E -- Drier, Yotam -- Fonseca, Rafael -- Gabriel, Stacey B -- Hofmeister, Craig C -- Jagannath, Sundar -- Jakubowiak, Andrzej J -- Krishnan, Amrita -- Levy, Joan -- Liefeld, Ted -- Lonial, Sagar -- Mahan, Scott -- Mfuko, Bunmi -- Monti, Stefano -- Perkins, Louise M -- Onofrio, Robb -- Pugh, Trevor J -- Rajkumar, S Vincent -- Ramos, Alex H -- Siegel, David S -- Sivachenko, Andrey -- Stewart, A Keith -- Trudel, Suzanne -- Vij, Ravi -- Voet, Douglas -- Winckler, Wendy -- Zimmerman, Todd -- Carpten, John -- Trent, Jeff -- Hahn, William C -- Garraway, Levi A -- Meyerson, Matthew -- Lander, Eric S -- Getz, Gad -- Golub, Todd R -- K12 CA133250/CA/NCI NIH HHS/ -- R01 AG020686/AG/NIA NIH HHS/ -- R01 AG020686-07/AG/NIA NIH HHS/ -- R01 CA133115/CA/NCI NIH HHS/ -- R01 CA133115-04/CA/NCI NIH HHS/ -- R01 CA133966/CA/NCI NIH HHS/ -- R01 CA133966-03/CA/NCI NIH HHS/ -- England -- Nature. 2011 Mar 24;471(7339):467-72. doi: 10.1038/nature09837.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Eli and Edythe L. Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02412, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21430775" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Blood Coagulation/genetics ; CpG Islands/genetics ; DNA Mutational Analysis ; DNA Repair/genetics ; Exons/genetics ; Exosome Multienzyme Ribonuclease Complex ; Genome, Human/*genetics ; Genomics ; Histones/metabolism ; Homeodomain Proteins/genetics ; Homeostasis/genetics ; Humans ; Methylation ; Models, Molecular ; Molecular Sequence Data ; Multiple Myeloma/drug therapy/enzymology/*genetics/metabolism ; Mutation/*genetics ; NF-kappa B/metabolism ; Oncogenes/genetics ; Open Reading Frames/genetics ; Protein Biosynthesis/genetics ; Protein Conformation ; Proto-Oncogene Proteins B-raf/antagonists & inhibitors/genetics/metabolism ; RNA Processing, Post-Transcriptional/genetics ; Ribonucleases/chemistry/genetics ; Signal Transduction/genetics ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...