Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0014-4827
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1437-160X
    Keywords: Rheumatoid ; Synovium ; Prostaglandin E collagenase ; Mononuclear cell factor(s)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Using organ and cell culture techniques for tissues and cells derived from human sources, we have investigated cellular interactions involving synovial tissue. Normal synovium in culture produced less prostaglandin E (PGE) and collagenase than cultures of rheumatoid synovial fragments. When synovial tissue was dissociated by enzymatic digestion, monolayers of adherent cells were established in primary culture. The adherent cells rapidly lost the ability to synthesize large amounts of PGE and collagenase and rheumatoid synovial cells became indistinguishable from normal synovial cells. Supernatants from cultured human mononuclear blood cells contained activities (Mononuclear cell factor(s)=MCF) which stimulated PGE and collagenase production by either normal or rheumatoid synovial cells. Conditioned medium from cultures of either normal or rheumatoid synovial fragments (Synovial factor(s)=SF) also stimulated production of PGE and collagenase by these human cells. Both MCF and SF also stimulated the production of PGE by cells isolated from human trabecular bone. Since both normal and rheumatoid synovial cells respond similarly to these factors, there appears to be little specificity with regard to whether the target cells are derived from normal or pathological sources. Furthermore, since both normal and rheumatoid synovium are able to produce similar amounts of stimulatory activity, inflammatory cells are not solely responsible for these phenomena. Normal synovium must therefore contain cells which can be recruited to participate in these potential cellular interactions. Destruction of joint structures may be mediated by factors of the type studied here, which may be produced when there is failure of the mechanisms that prevent them from being synthesised or released.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1437-160X
    Keywords: Chondrocyte ; Mononuclear cell factor ; Plasminogen activator ; Prostaglandin E ; Cartilage
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary We have examined the way in which products of cultured human blood mononuclear cells activate human articular chondrocytes. Conditioned medium from mononuclear cells enhanced the production of prostaglandin E by cultured human chondrocytes and also stimulated fibrinolytic activity in these cultures. These two effects may be interrelated, since the increased fibrinolysis in response to products of mononuclear cells was partially inhibited by indomethacin, an inhibitor of prostaglandin biosynthesis. The increased fibrinolysis is probably attributable to plasminogen activator, since it was strongly dependent on the presence of plasminogen. Increased amounts of PGE and chondroitin sulphate were also released from intact fragments of cartilage exposed to medium from cultured mononuclear cells. The time course and dose dependence of these effects were studied. The addition of exogenous arachidonic acid markedly enhanced production of PGE2. Ultrogel AcA54 was used to fractionate medium from cultured mononuclear cells and the chondrocyte-stimulating activity eluted with an apparent molecular weight between 12 000 and 25 000 daltons. Adherent and non-adherent mononuclear blood cells were also partially separated and conditioned medium from each was assayed for chondrocyte-stimulating factors. Both populations released factor(s) which increased the production of prostaglandin E by chondrocytes, but more activity came from the adherent mononuclear cells. The possible interrelationship between the chondrocyte activating factor studied here and others described in the literature is discussed.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...