Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-02-11
    Description: Telomere dysfunction activates p53-mediated cellular growth arrest, senescence and apoptosis to drive progressive atrophy and functional decline in high-turnover tissues. The broader adverse impact of telomere dysfunction across many tissues including more quiescent systems prompted transcriptomic network analyses to identify common mechanisms operative in haematopoietic stem cells, heart and liver. These unbiased studies revealed profound repression of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha and beta (PGC-1alpha and PGC-1beta, also known as Ppargc1a and Ppargc1b, respectively) and the downstream network in mice null for either telomerase reverse transcriptase (Tert) or telomerase RNA component (Terc) genes. Consistent with PGCs as master regulators of mitochondrial physiology and metabolism, telomere dysfunction is associated with impaired mitochondrial biogenesis and function, decreased gluconeogenesis, cardiomyopathy, and increased reactive oxygen species. In the setting of telomere dysfunction, enforced Tert or PGC-1alpha expression or germline deletion of p53 (also known as Trp53) substantially restores PGC network expression, mitochondrial respiration, cardiac function and gluconeogenesis. We demonstrate that telomere dysfunction activates p53 which in turn binds and represses PGC-1alpha and PGC-1beta promoters, thereby forging a direct link between telomere and mitochondrial biology. We propose that this telomere-p53-PGC axis contributes to organ and metabolic failure and to diminishing organismal fitness in the setting of telomere dysfunction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3741661/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3741661/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sahin, Ergun -- Colla, Simona -- Liesa, Marc -- Moslehi, Javid -- Muller, Florian L -- Guo, Mira -- Cooper, Marcus -- Kotton, Darrell -- Fabian, Attila J -- Walkey, Carl -- Maser, Richard S -- Tonon, Giovanni -- Foerster, Friedrich -- Xiong, Robert -- Wang, Y Alan -- Shukla, Sachet A -- Jaskelioff, Mariela -- Martin, Eric S -- Heffernan, Timothy P -- Protopopov, Alexei -- Ivanova, Elena -- Mahoney, John E -- Kost-Alimova, Maria -- Perry, Samuel R -- Bronson, Roderick -- Liao, Ronglih -- Mulligan, Richard -- Shirihai, Orian S -- Chin, Lynda -- DePinho, Ronald A -- P30 DK046200/DK/NIDDK NIH HHS/ -- P30DK079638/DK/NIDDK NIH HHS/ -- R01 CA084628/CA/NCI NIH HHS/ -- R01 DK035914/DK/NIDDK NIH HHS/ -- R01 DK056690/DK/NIDDK NIH HHS/ -- R01 DK063356/DK/NIDDK NIH HHS/ -- R01 DK089185/DK/NIDDK NIH HHS/ -- U24 DK-59635/DK/NIDDK NIH HHS/ -- England -- Nature. 2011 Feb 17;470(7334):359-65. doi: 10.1038/nature09787. Epub 2011 Feb 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21307849" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/biosynthesis ; Aging/metabolism/pathology ; Animals ; Cardiomyopathies/chemically induced/metabolism/pathology/physiopathology ; Cell Proliferation ; DNA, Mitochondrial/analysis ; Doxorubicin/toxicity ; Gluconeogenesis ; Hematopoietic Stem Cells/metabolism/pathology ; Liver/cytology/metabolism ; Mice ; Mitochondria/*metabolism/*pathology ; Myocardium/cytology/metabolism ; RNA/genetics ; Reactive Oxygen Species/metabolism ; Telomerase/deficiency/genetics ; Telomere/enzymology/genetics/*metabolism/*pathology ; Transcription Factors/antagonists & inhibitors/metabolism ; Tumor Suppressor Protein p53/deficiency/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    German Medical Science GMS Publishing House; Düsseldorf
    In:  16. Deutscher Kongress für Versorgungsforschung (DKVF); 20171004-20171006; Berlin; DOCV020 /20170926/
    Publication Date: 2017-09-26
    Keywords: ddc: 610
    Language: German
    Type: conferenceObject
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: EXPRESSION ; TOLERANCE ; CAENORHABDITIS-ELEGANS ; ARABIDOPSIS-THALIANA ; SUPEROXIDE-DISMUTASE ; RICHTERSIUS-CORONIFER ; LIFE-SPAN REGULATION ; VITELLOGENIN GENES ; YOLK PROTEINS ; WATER-STRESS
    Abstract: Tardigrades have fascinated researchers for more than 300 years because of their extraordinary capability to undergo cryptobiosis and survive extreme environmental conditions. However, the survival mechanisms of tardigrades are still poorly understood mainly due to the absence of detailed knowledge about the proteome and genome of these organisms. Our study was intended to provide a basis for the functional characterization of expressed proteins in different states of tardigrades. High-throughput, high-accuracy proteomics in combination with a newly developed tardigrade specific protein database resulted in the identification of more than 3000 proteins in three different states: early embryonic state and adult animals in active and anhydrobiotic state. This comprehensive proteome resource includes protein families such as chaperones, antioxidants, ribosomal proteins, cytoskeletal proteins, transporters, protein channels, nutrient reservoirs, and developmental proteins. A comparative analysis of protein families in the different states was performed by calculating the exponentially modified protein abundance index which classifies proteins in major and minor components. This is the first step to analyzing the proteins involved in early embryonic development, and furthermore proteins which might play an important role in the transition into the anhydrobiotic state.
    Type of Publication: Journal article published
    PubMed ID: 23029181
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: IONIZING-RADIATION ; Germany ; MODEL ; INFORMATION ; GENE ; GENES ; DNA ; TOLERANCE ; SEQUENCE ; SEQUENCES ; WATER ; IDENTIFICATION ; CHROMATIN ; HEAT-SHOCK ; STRESS ; genetics ; DAMAGE ; DATABASE ; CAENORHABDITIS-ELEGANS ; assembly ; TRANSLATION ; EXPRESSED SEQUENCE TAGS ; transcriptome ; CONTROLLED TUMOR PROTEIN ; radiation tolerance ; Genetic ; MILNESIUM-TARDIGRADUM ; RICHTERSIUS-CORONIFER ; ADORYBIOTUS-CORONIFER ; DESICCATION TOLERANCE ; Species ; CONTRIBUTE ; EST ; ACID-BINDING PROTEINS ; FREEZE TOLERANCE ; POLYPEDILUM-VANDERPLANKI ; Sequence information
    Abstract: Background: The phenomenon of desiccation tolerance, also called anhydrobiosis, involves the ability of an organism to survive the loss of almost all cellular water without sustaining irreversible damage. Although there are several physiological, morphological and ecological studies on tardigrades, only limited DNA sequence information is available. Therefore, we explored the transcriptome in the active and anhydrobiotic state of the tardigrade Milnesium tardigradum which has extraordinary tolerance to desiccation and freezing. In this study, we present the first overview of the transcriptome of M. tardigradum and its response to desiccation and discuss potential parallels to stress responses in other organisms. Results: We sequenced a total of 9984 expressed sequence tags (ESTs) from two cDNA libraries from the eutardigrade M. tardigradum in its active and inactive, anhydrobiotic (tun) stage. Assembly of these ESTs resulted in 3283 putative unique transcripts, whereof similar to 50% showed significant sequence similarity to known genes. The resulting unigenes were functionally annotated using the Gene Ontology (GO) vocabulary. A GO term enrichment analysis revealed several GOs that were significantly underrepresented in the inactive stage. Furthermore we compared the putative unigenes of M. tardigradum with ESTs from two other eutardigrade species that are available from public sequence databases, namely Richtersius coronifer and Hypsibius dujardini. The processed sequences of the three tardigrade species revealed similar functional content and the M. tardigradum dataset contained additional sequences from tardigrades not present in the other two. Conclusions: This study describes novel sequence data from the tardigrade M. tardigradum, which significantly contributes to the available tardigrade sequence data and will help to establish this extraordinary tardigrade as a model for studying anhydrobiosis. Functional comparison of active and anhydrobiotic tardigrades revealed a differential distribution of Gene Ontology terms associated with chromatin structure and the translation machinery, which are underrepresented in the inactive animals. These findings imply a widespread metabolic response of the animals on dehydration. The collective tardigrade transcriptome data will serve as a reference for further studies and support the identification and characterization of genes involved in the anhydrobiotic response
    Type of Publication: Journal article published
    PubMed ID: 20226016
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    German Medical Science GMS Publishing House; Düsseldorf
    In:  60. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie (DGNC), Joint Meeting mit den Benelux-Ländern und Bulgarien; 20090524-20090527; Münster; DOCMI.10-06 /20090520/
    Publication Date: 2009-06-30
    Keywords: ddc: 610
    Language: English
    Type: conferenceObject
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    German Medical Science GMS Publishing House; Düsseldorf
    In:  17. Deutscher Kongress für Versorgungsforschung (DKVF); 20181010-20181012; Berlin; DOC18dkvf132 /20181012/
    Publication Date: 2018-10-13
    Keywords: ddc: 610
    Language: German
    Type: conferenceObject
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Keywords: EXPRESSION ; Germany ; MODEL ; INFORMATION ; SYSTEM ; GENE ; GENE-EXPRESSION ; GENOME ; PROTEIN ; PROTEINS ; RESOLUTION ; MECHANISM ; FAMILY ; DOMAIN ; mechanisms ; TOLERANCE ; CYCLE ; SEQUENCE ; IDENTIFICATION ; gene expression ; HEAT-SHOCK ; mass spectrometry ; SPECTROMETRY ; DATABASE ; MASS-SPECTROMETRY ; PROJECT ; PROTEOMICS ; PROTEIN IDENTIFICATION ; ARABIDOPSIS-THALIANA ; HIGH-RESOLUTION ; ANNOTATION ; SCIENCE ; LIFE ; MOLECULAR-MECHANISMS ; GLUTATHIONE S-TRANSFERASES ; Genetic ; protein extraction ; MILNESIUM-TARDIGRADUM ; RICHTERSIUS-CORONIFER ; ARTEMIA-FRANCISCANA ; DESICCATION TOLERANCE ; EST ; Sequence information ; Molecular mechanisms ; BRINE SHRIMP ; TREHALOSE
    Abstract: Background: Tardigrades are small, multicellular invertebrates which are able to survive times of unfavourable environmental conditions using their well-known capability to undergo cryptobiosis at any stage of their life cycle. Milnesium tardigradum has become a powerful model system for the analysis of cryptobiosis. While some genetic information is already available for Milnesium tardigradum the proteome is still to be discovered. Principal Findings: Here we present to the best of our knowledge the first comprehensive study of Milnesium tardigradum on the protein level. To establish a proteome reference map we developed optimized protocols for protein extraction from tardigrades in the active state and for separation of proteins by high resolution two-dimensional gel electrophoresis. Since only limited sequence information of M. tardigradum on the genome and gene expression level is available to date in public databases we initiated in parallel a tardigrade EST sequencing project to allow for protein identification by electrospray ionization tandem mass spectrometry. 271 out of 606 analyzed protein spots could be identified by searching against the publicly available NCBInr database as well as our newly established tardigrade protein database corresponding to 144 unique proteins. Another 150 spots could be identified in the tardigrade clustered EST database corresponding to 36 unique contigs and ESTs. Proteins with annotated function were further categorized in more detail by their molecular function, biological process and cellular component. For the proteins of unknown function more information could be obtained by performing a protein domain annotation analysis. Our results include proteins like protein member of different heat shock protein families and LEA group 3, which might play important roles in surviving extreme conditions. Conclusions: The proteome reference map of Milnesium tardigradum provides the basis for further studies in order to identify and characterize the biochemical mechanisms of tolerance to extreme desiccation. The optimized proteomics workflow will enable application of sensitive quantification techniques to detect differences in protein expression, which are characteristic of the active and anhydrobiotic states of tardigrades
    Type of Publication: Journal article published
    PubMed ID: 20224743
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-10-03
    Keywords: ddc: 610
    Language: German
    Type: conferenceObject
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    German Medical Science GMS Publishing House; Düsseldorf
    In:  18. Deutscher Kongress für Versorgungsforschung (DKVF); 20191009-20191011; Berlin; DOC19dkvf081 /20191002/
    Publication Date: 2019-10-03
    Keywords: ddc: 610
    Language: German
    Type: conferenceObject
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...