Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Proceed order?

  • 1
    Publication Date: 2014-06-10
    Description: Cancer stem cells (CSCs) have been reported in various cancers, including in skin squamous-cell carcinoma (SCC). The molecular mechanisms regulating tumour initiation and stemness are still poorly characterized. Here we find that Sox2, a transcription factor expressed in various types of embryonic and adult stem cells, was the most upregulated transcription factor in the CSCs of squamous skin tumours in mice. SOX2 is absent in normal epidermis but begins to be expressed in the vast majority of mouse and human pre-neoplastic skin tumours, and continues to be expressed in a heterogeneous manner in invasive mouse and human SCCs. In contrast to other SCCs, in which SOX2 is frequently genetically amplified, the expression of SOX2 in mouse and human skin SCCs is transcriptionally regulated. Conditional deletion of Sox2 in the mouse epidermis markedly decreases skin tumour formation after chemical-induced carcinogenesis. Using green fluorescent protein (GFP) as a reporter of Sox2 transcriptional expression (SOX2-GFP knock-in mice), we showed that SOX2-expressing cells in invasive SCC are greatly enriched in tumour-propagating cells, which further increase upon serial transplantations. Lineage ablation of SOX2-expressing cells within primary benign and malignant SCCs leads to tumour regression, consistent with the critical role of SOX2-expressing cells in tumour maintenance. Conditional Sox2 deletion in pre-existing skin papilloma and SCC leads to tumour regression and decreases the ability of cancer cells to be propagated upon transplantation into immunodeficient mice, supporting the essential role of SOX2 in regulating CSC functions. Transcriptional profiling of SOX2-GFP-expressing CSCs and of tumour epithelial cells upon Sox2 deletion uncovered a gene network regulated by SOX2 in primary tumour cells in vivo. Chromatin immunoprecipitation identified several direct SOX2 target genes controlling tumour stemness, survival, proliferation, adhesion, invasion and paraneoplastic syndrome. We demonstrate that SOX2, by marking and regulating the functions of skin tumour-initiating cells and CSCs, establishes a continuum between tumour initiation and progression in primary skin tumours.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boumahdi, Soufiane -- Driessens, Gregory -- Lapouge, Gaelle -- Rorive, Sandrine -- Nassar, Dany -- Le Mercier, Marie -- Delatte, Benjamin -- Caauwe, Amelie -- Lenglez, Sandrine -- Nkusi, Erwin -- Brohee, Sylvain -- Salmon, Isabelle -- Dubois, Christine -- del Marmol, Veronique -- Fuks, Francois -- Beck, Benjamin -- Blanpain, Cedric -- England -- Nature. 2014 Jul 10;511(7508):246-50. doi: 10.1038/nature13305. Epub 2014 Jun 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Universite Libre de Bruxelles, IRIBHM, Brussels B-1070, Belgium. ; 1] Universite Libre de Bruxelles, IRIBHM, Brussels B-1070, Belgium [2]. ; 1] Department of Pathology, Erasme Hospital, Universite Libre de Bruxelles, Brussels B-1070, Belgium [2] DIAPATH-Center for Microscopy and Molecular Imaging (CMMI), Gosselies B-6041, Belgium. ; Department of Pathology, Erasme Hospital, Universite Libre de Bruxelles, Brussels B-1070, Belgium. ; Laboratory of Cancer Epigenetics, Universite Libre de Bruxelles, Brussels B-1070, Belgium. ; Machine Learning Group, Computer Science Department, Faculte des Sciences, Universite Libre de Bruxelles, Brussels B-1050, Belgium. ; Department of Dermatology, Erasme Hospital, Universite Libre de Bruxelles, Brussels B-1070, Belgium. ; 1] Universite Libre de Bruxelles, IRIBHM, Brussels B-1070, Belgium [2] WELBIO, Universite Libre de Bruxelles, Brussels B-1070, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Carcinoma, Squamous Cell/genetics/pathology ; Cell Adhesion/genetics ; Cell Proliferation ; Cell Transformation, Neoplastic/*genetics/metabolism ; Disease Models, Animal ; Gene Deletion ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Gene Knockdown Techniques ; Gene Regulatory Networks/genetics ; Mice ; Mice, Inbred Strains ; Neoplastic Stem Cells/*metabolism ; SOXB1 Transcription Factors/genetics/*metabolism ; *Skin Neoplasms/genetics/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-01-28
    Description: Hydroxymethylcytosine, well described in DNA, occurs also in RNA. Here, we show that hydroxymethylcytosine preferentially marks polyadenylated RNAs and is deposited by Tet in Drosophila. We map the transcriptome-wide hydroxymethylation landscape, revealing hydroxymethylcytosine in the transcripts of many genes, notably in coding sequences, and identify consensus sites for hydroxymethylation. We found that RNA hydroxymethylation can favor mRNA translation. Tet and hydroxymethylated RNA are found to be most abundant in the Drosophila brain, and Tet-deficient fruitflies suffer impaired brain development, accompanied by decreased RNA hydroxymethylation. This study highlights the distribution, localization, and function of cytosine hydroxymethylation and identifies central roles for this modification in Drosophila.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Delatte, Benjamin -- Wang, Fei -- Ngoc, Long Vo -- Collignon, Evelyne -- Bonvin, Elise -- Deplus, Rachel -- Calonne, Emilie -- Hassabi, Bouchra -- Putmans, Pascale -- Awe, Stephan -- Wetzel, Collin -- Kreher, Judith -- Soin, Romuald -- Creppe, Catherine -- Limbach, Patrick A -- Gueydan, Cyril -- Kruys, Veronique -- Brehm, Alexander -- Minakhina, Svetlana -- Defrance, Matthieu -- Steward, Ruth -- Fuks, Francois -- R01 GM089992/GM/NIGMS NIH HHS/ -- T32 CA117846/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2016 Jan 15;351(6270):282-5. doi: 10.1126/science.aac5253.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Universite Libre de Bruxelles (ULB), Brussels, Belgium. ; Waksman Institute, Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ, USA. ; Laboratory of Molecular Biology of the Gene, Faculty of Sciences, Universite Libre de Bruxelles, Gosselies, Belgium. ; Institut fur Molekularbiologie und Tumorforschung, Philipps-Universitat Marburg, Marburg, Germany. ; Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA. ; Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Universite Libre de Bruxelles (ULB), Brussels, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*abnormalities/metabolism ; Cell Line ; Cytosine/*analogs & derivatives/metabolism ; Dioxygenases/genetics/metabolism ; Drosophila melanogaster/genetics/*growth & development/metabolism ; Methylation ; RNA, Messenger/genetics/*metabolism ; Transcriptome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Abstract: The genetic alphabet consists of the four letters: C, A, G, and T in DNA and C,A,G, and U in RNA. Triplets of these four letters jointly encode 20 different amino acids out of which proteins of all organisms are built. This system is universal and is found in all kingdoms of life. However, bases in DNA and RNA can be chemically modified. In DNA, around 10 different modifications are known, and those have been studied intensively over the past 20 years. Scientific studies on DNA modifications and proteins that recognize them gave rise to the large field of epigenetic and epigenomic research. The outcome of this intense research field is the discovery that development, ageing, and stem-cell dependent regeneration but also several diseases including cancer are largely controlled by the epigenetic state of cells. Consequently, this research has already led to the first FDA approved drugs that exploit the gained knowledge to combat disease.
    Type of Publication: Journal article published
    PubMed ID: 29671387
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Abstract: Histone demethylation has important roles in regulating gene expression and forms part of the epigenetic memory system that regulates cell fate and identity by still poorly understood mechanisms. Here, we examined the role of histone demethylase Kdm3a during cell differentiation, showing that Kdm3a is essential for differentiation into parietal endoderm-like (PE) cells in the F9 mouse embryonal carcinoma model. We identified a number of target genes regulated by Kdm3a during endoderm differentiation; among the most dysregulated were the three developmental master regulators Dab2, Pdlim4 and FoxQ1. We show that dysregulation of the expression of these genes correlates with Kdm3a H3K9me2 demethylase activity. We further demonstrate that either Dab2 depletion or Kdm3a depletion prevents F9 cells from fully differentiating into PE cells, but that ectopic expression of Dab2 cannot compensate for Kdm3a knockdown; Dab2 is thus necessary, but insufficient on its own, to promote complete terminal differentiation. We conclude that Kdm3a plays a crucial role in progression through PE differentiation by regulating expression of a set of endoderm differentiation master genes. The emergence of Kdm3a as a key modulator of cell fate decision strengthens the view that histone demethylases are essential to cell differentiation.
    Type of Publication: Journal article published
    PubMed ID: 22581778
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Abstract: In addition to genetic predisposition, environmental and lifestyle factors contribute to the pathogenesis of type 2 diabetes (T2D). Epigenetic changes may provide the link for translating environmental exposures into pathological mechanisms. In this study, we performed the first comprehensive DNA methylation profiling in pancreatic islets from T2D and non-diabetic donors. We uncovered 276 CpG loci affiliated to promoters of 254 genes displaying significant differential DNA methylation in diabetic islets. These methylation changes were not present in blood cells from T2D individuals nor were they experimentally induced in non-diabetic islets by exposure to high glucose. For a subgroup of the differentially methylated genes, concordant transcriptional changes were present. Functional annotation of the aberrantly methylated genes and RNAi experiments highlighted pathways implicated in beta-cell survival and function; some are implicated in cellular dysfunction while others facilitate adaptation to stressors. Together, our findings offer new insights into the intricate mechanisms of T2D pathogenesis, underscore the important involvement of epigenetic dysregulation in diabetic islets and may advance our understanding of T2D aetiology.
    Type of Publication: Journal article published
    PubMed ID: 22293752
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-21
    Description: Ten-eleven translocation enzymes (TET1, TET2, and TET3), which induce DNA demethylation and gene regulation by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), are often down-regulated in cancer. We uncover, in basal-like breast cancer (BLBC), genome-wide 5hmC changes related to TET1 regulation. We further demonstrate that TET1 repression is associated with high expression of immune markers and high infiltration by immune cells. We identify in BLBC tissues an anticorrelation between TET1 expression and the major immunoregulator family nuclear factor B (NF-B). In vitro and in mice, TET1 is down-regulated in breast cancer cells upon NF-B activation through binding of p65 to its consensus sequence in the TET1 promoter. We lastly show that these findings extend to other cancer types, including melanoma, lung, and thyroid cancers. Together, our data suggest a novel mode of regulation for TET1 in cancer and highlight a new paradigm in which the immune system can influence cancer cell epigenetics.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...