Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    facet.materialart.
    German Medical Science; Düsseldorf, Köln
    In:  77. Jahresversammlung der Deutschen Gesellschaft für Hals-Nasen-Ohren-Heilkunde, Kopf- und Hals-Chirurgie e.V.; 20060524-20060528; Mannheim; DOC06hnod330 /20060424/
    Publication Date: 2006-04-25
    Keywords: ddc: 610
    Language: German
    Type: conferenceObject
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Abstract: Merkel cell carcinoma (MCC) is a rare and aggressive, yet highly immunogenic skin cancer. The latter is due to its viral or UV-associated carcinogenesis. For tumor progression MCC has to escape the host's immuno-surveillance, e.g. by loss of HLA class-I expression. Indeed, a reduced HLA class-I expression was observed in MCC tumor tissues and MCC cell lines. This reduced HLA class-I surface expression is caused by an impaired expression of key components of the antigen processing machinery (APM), including LMP2 and LMP7 as well as TAP1 and TAP2. Notably, experimental provisions of HLA class-I binding peptides restored HLA class-I surface expression on MCC cells. Silencing of the HLA class-I APM is due to histone deacetylation as inhibition of histone deacetylases (HDACs) not only induced acetylation of histones in the respective promoter regions but also re-expression of APM components. Thus, HDAC inhibition restored HLA class-I surface expression in vitro and in a mouse xenotransplantation model. In contrast to re-induction of HLA class-I by interferons, HDAC inhibitors did not interfere with the expression of immuno-dominant viral proteins. In summary, restoration of HLA class-I expression on MCC cells by epigenetic priming is an attractive approach to enhance therapies boosting adaptive immune responses.
    Type of Publication: Journal article published
    PubMed ID: 28536458
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: RECEPTOR ; CANCER ; CELLS ; EXPRESSION ; IN-VITRO ; tumor ; CELL ; human ; IN-VIVO ; MODEL ; THERAPY ; VITRO ; VIVO ; SITES ; TUMORS ; LINES ; MICE ; LIGAND ; IFN-GAMMA ; LYMPH-NODES ; CELL-LINES ; RECOGNITION ; antibody ; MOUSE ; PROGRESSION ; DISRUPTION ; metastases ; MELANOMA ; LIGANDS ; innate immunity ; NATURAL-KILLER-CELLS ; NK cells ; NKG2D ; MALIGNANT-MELANOMA ; melanoma cells ; RECEPTORS ; cell lines ; CYTOTOXICITY ; INTERFERENCE ; THERAPIES ; uveal melanoma ; USA ; Genetic ; POLIOVIRUS RECEPTOR
    Abstract: NK cells use a variety of receptors to detect abnormal cells, including tumors and their metastases. However, in the case of melanoma, it remains to be determined what specific molecular interactions are involved and whether NK cells control metastatic progression and/or the route of dissemination. Here we show that human melanoma cell lines derived from LN metastases express ligands for natural cytotoxicity receptors (NCRs) and DNAX accessory molecule-1 (DNAM-1), two emerging NK cell receptors key for cancer cell recognition, but not NK group 2 member D (NKG2D). Compared with cell lines derived from metastases taken from other anatomical sites, LN metastases were more susceptible to NK cell lysis and preferentially targeted by adoptively transferred NK cells in a xenogeneic model of cell therapy. In mice, DNAM-1 and NCR ligands were also found on spontaneous melanomas and melanoma cell lines. Interference with DNAM-1 and NCRs by antibody blockade or genetic disruption reduced killing of melanoma cells. Taken together, these results show that DNAM-1 and NCRs are critical for NK cell-mediated innate immunity to melanoma cells and provide a background to design NK cell-based immunotherapeutic strategies against melanoma and possibly other tumors
    Type of Publication: Journal article published
    PubMed ID: 19349689
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: CANCER ; antibody ; METASTATIC MELANOMA ; MUTATIONS ; EPITOPE ; IMMUNOTHERAPY ; IMMUNE ESCAPE ; TUMOR-ANTIGENS ; EMBEDDED TISSUE-SECTIONS ; I ANTIGEN-EXPRESSION
    Abstract: Purpose: CD8(+) T lymphocytes can kill autologous melanoma cells, but their activity is impaired when poorly immunogenic tumor phenotypes evolve in the course of disease progression. Here, we analyzed three consecutive melanoma lesions obtained within one year of developing stage IV disease for their recognition by autologous T cells. Experimental Design: One skin (Ma-Mel-48a) and two lymph node (Ma-Mel-48b, Ma-Mel-48c) metastases were analyzed for T-cell infiltration. Melanoma cell lines established from the respective lesions were characterized, determining the T-cell-stimulatory capacity, expression of surface molecules involved in T-cell activation, and specific genetic alterations affecting the tumor-T-cell interaction. Results: Metastases Ma-Mel-48a and Ma-Mel-48b, in contrast with Ma-Mel-48c, were infiltrated by T cells. The T-cell-stimulatory capacity was found to be strong for Ma-Mel-48a, lower for Ma-Mel-48b, and completely abrogated for Ma-Mel-48c cells. The latter proved to be HLA class I-negative due to an inactivating mutation in one allele of the beta-2-microglobulin (B2M) gene and concomitant loss of the other allele by a deletion on chromosome 15q. The same deletion was already present in Ma-Mel-48a and Ma-Mel-48b cells, pointing to an early acquired genetic event predisposing to development of beta 2m deficiency. Notably, the same chronology of genetic alterations was also observed in a second beta 2m-deficient melanoma model. Conclusion: Our study reveals a progressive loss in melanoma immunogenicity during the course of metastatic disease. The genetic evolvement of T-cell resistance suggests screening tumors for genetic alterations affecting immunogenicity could be clinically relevant in terms of predicting patient responses to T-cell-based immunotherapy.
    Type of Publication: Journal article published
    PubMed ID: 25294904
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Abstract: The human leukocyte antigen (HLA) class II antigen-processing machinery (APM) presents to cognate CD4+ T-cells antigenic peptides mainly generated from exogeneous proteins in the endocytic compartment. These CD4+ T cells exert helper function, but may also act as effector cells, thereby recognizing HLA class II antigen-expressing tumor cells. Thus, HLA class II antigen expression by tumor cells influences the tumor antigen (TA)-specific immune responses and, depending on the cancer type, the clinical course of the disease. Many types of human cancers express HLA class II antigens, although with marked differences in their frequency. Some types of cancer lack HLA class II antigen expression, which could be due to structural defects or deregulation affecting different components of the complex HLA class II APM and/or from lack of cytokine(s) in the tumor microenvironment. In this review, we have summarized the information about HLA class II antigen distribution in normal tissues, the structural organization of the HLA class II APM, their expression and regulation in malignant cells, the defects, which have been identified in malignant cells, and their functional and clinical relevance.
    Type of Publication: Journal article published
    PubMed ID: 28344859
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: APOPTOSIS ; CELLS ; GROWTH ; CELL ; evaluation ; Germany ; human ; DEATH ; DISEASE ; MONOCLONAL-ANTIBODY ; PATIENT ; primary ; INDUCTION ; ANTIGEN ; culture ; antibodies ; TRANSPORT ; ESCHERICHIA-COLI ; CELL-DEATH ; CYCLOSPORINE-A ; MELANOMA ; CHROMATOGRAPHY ; MALIGNANT-MELANOMA ; AFFINITY-CHROMATOGRAPHY ; AGENT ; CHAIN ; ONCOLOGY ; RECOMBINANT ; RE ; MELANOMA-CELLS ; ACUTE MYELOID-LEUKEMIA ; PHASE-I TRIAL ; USA ; FRAGMENT ; MEDICINE ; bacterial ; Escherichia coli ; CYTOTOXIC ACTIVITY ; affinity chromatography ; Net ; exotoxin A ; immunotoxin ; antibody therapeutics ; CHIMERIC TOXINS ; cyclosporin A ; high molecular weight-melanoma associated antigen ; melanoma-associated chondroitin sulfate proteoglycan ; PSEUDOMONAS EXOTOXIN
    Abstract: A recombinant immunotoxin was constructed by fusing a single chain fragment variable antibody fragment, specific for the melanoma-associated chondroitin sulfate proteoglycan (MCSP), to a truncated variant of Pseudomonas exotoxin A (ETA), carrying a C-terminal KDEL-peptide for improved retrograde intracellular transport. The resulting immunotoxin MCSP-ETA' was periplasmatically expressed in Escherichia coli and purified under native conditions by affinity chromatography resulting in a yield of approximately 30 mu g/l bacterial culture. This immunotoxin induced antigen-specific apoptosis in the cultured human melanoma-derived cell lines A2058 and A375M, and treatment with a single dose of the agent eliminated up to 80% of these cells within 72 h. The dose needed for half-maximum killing (EC50) was approximately 1 nmol/l for both cell lines. MCSP-ETA' also displayed cytotoxic activity against cultured primary melanoma cells from patients with advanced disease (pathologic stages IIIC and IV), with net cell death reaching up to 70% within 96 h after treatment with a single dose of 14 nmol/l. MCSP-ETA' induced cell death synergistically with cyclosporin A, both in established human melanoma cell lines and cultured primary melanoma cells. The distinctive antigen-restricted induction of apoptosis and the synergy with cyclosporin A justify further evaluation of this novel agent with regard to its potential application for the treatment of malignant melanoma
    Type of Publication: Journal article published
    PubMed ID: 18337643
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: MECHANISM ; prognosis ; antibodies ; metastases ; LYMPHOCYTES ; INSTABILITY ; CARCINOMAS ; DR EXPRESSION ; TUMOR-SPECIFIC ANTIGENS ; ESTABLISHED MELANOMA
    Abstract: Besides being expressed on professional antigen-presenting cells, HLA class II antigens are expressed on various tumors of non-lymphoid origin, including a subset of colorectal cancers (CRC). Information about the regulation of HLA class II antigen expression is important for a better understanding of their role in the interactions between tumor and immune cells. Whether lack of HLA class II antigen expression in tumors reflects the selective immune destruction of HLA class II antigen-expressing tumor cells is unknown. To address this question, we tested whether lack of HLA class II antigen expression in CRC was associated with immune cell infiltration. We selected microsatellite-unstable (MSI-H) CRC, because they show pronounced tumor antigen-specific immune responses and, in a subset of tumors, lack of HLA class II antigen expression due to mutations inactivating HLA class II-regulatory genes. We examined HLA class II antigen expression, mutations in regulatory genes, and CD4-positive T cell infiltration in 69 MSI-H CRC lesions. Mutations in RFX5, CIITA, and RFXAP were found in 13 (28.9 %), 3 (6.7 %), and 1 (2.2 %) out of 45 HLA class II antigen-negative tumors. CD4-positive tumor-infiltrating lymphocyte counts were significantly higher in HLA class II antigen-negative tumors harboring mutations in HLA class II-regulatory genes (107.4 T cells per 0.25 mm(2)) compared to tumors without mutations (55.5 T cells per 0.25 mm(2), p = 0.008). Our results suggest that the outgrowth of tumor cells lacking HLA class II antigen expression due to mutations of regulatory genes is favored in an environment of dense CD4-positive T cell infiltration.
    Type of Publication: Journal article published
    PubMed ID: 25445815
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: METASTATIC MELANOMA ; MONOCLONAL-ANTIBODIES ; ACQUIRED-RESISTANCE ; tumor microenvironment ; STAGE-IV MELANOMA ; MEK INHIBITION ; PRIMARY CUTANEOUS MELANOMA ; BRAF INHIBITOR ; IMPROVES EARLY-DETECTION ; ADOPTIVE CELL TRANSFER
    Abstract: The fourth inverted question markMelanoma Bridge Meeting inverted question mark took place in Naples, December 5 to 8th, 2013. The four topics discussed at this meeting were: Diagnosis and New Procedures, Molecular Advances and Combination Therapies, News in Immunotherapy, and Tumor Microenvironment and Biomarkers.Until recently systemic therapy for metastatic melanoma patients was ineffective, but recent research in tumor biology and immunology has led to the development of new targeted and immunotherapeutic agents that prolong progression-free survival (PFS) and overall survival (OS). New therapies, such as mitogen-activated protein kinase (MAPK) pathway inhibitors, like BRAF and MEK inhibitors, as well as other signaling pathways inhibitors, are being tested in metastatic melanoma either as monotherapy or in combination, and have yielded promising results.Improved survival rates have also been observed with immune therapy for patients with metastatic melanoma. Immune-modulating antibodies came to the forefront with anti-CTLA-4, programmed cell death-1 (PD-1) and PD-1 ligand 1 (PD-L1) pathway blocking antibodies that result in durable responses in a subset of melanoma patients. Agents targeting other immune inhibitory (e.g., Tim-3) or immune stimulating (e.g., CD137) receptors and other approaches such as adoptive cell transfer demonstrate clinical benefit in melanoma as well.This meeting inverted question marks specific focus was on advances in targeted therapy and immunotherapy. Both combination targeted therapy approaches and different immunotherapies were discussed. Similarly to the previous meetings, the importance of biomarkers for clinical application as markers for diagnosis, prognosis and prediction of treatment response was an integral part of the meeting. Significant consideration was given to issues surrounding the development of novel therapeutic targets as further study of patterns of resistance to both immunologic and targeted drugs are paramount to future drug development to guide existing and future therapies. The overall emphasis on biomarkers supports novel concepts toward integrating biomarkers into contemporary clinical management of patients with melanoma across the entire spectrum of disease stage. Translation of the knowledge gained from the biology of tumor microenvironment across different tumors represents a bridge to impact on prognosis and response to therapy in melanoma.
    Type of Publication: Journal article published
    PubMed ID: 25348889
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Abstract: The fourth "Melanoma Bridge Meeting" took place in Naples, December 3-6th, 2014. The four topics discussed at this meeting were: Molecular and Immunological Advances, Combination Therapies, News in Immunotherapy, and Tumor Microenvironment and Biomarkers. Until recently systemic therapy for metastatic melanoma patients was ineffective, but recent advances in tumor biology and immunology have led to the development of new targeted and immunotherapeutic agents that prolong progression-free survival (PFS) and overall survival (OS). New therapies, such as mitogen-activated protein kinase (MAPK) pathway inhibitors as well as other signaling pathway inhibitors, are being tested in patients with metastatic melanoma either as monotherapy or in combination, and all have yielded promising results. These include inhibitors of receptor tyrosine kinases (BRAF, MEK, and VEGFR), the phosphatidylinositol 3 kinase (PI3K) pathway [PI3K, AKT, mammalian target of rapamycin (mTOR)], activators of apoptotic pathway, and the cell cycle inhibitors (CDK4/6). Various locoregional interventions including radiotherapy and surgery are still valid approaches in treatment of advanced melanoma that can be integrated with novel therapies. Intrinsic, adaptive and acquired resistance occur with targeted therapy such as BRAF inhibitors, where most responses are short-lived. Given that the reactivation of the MAPK pathway through several distinct mechanisms is responsible for the majority of acquired resistance, it is logical to combine BRAF inhibitors with inhibitors of targets downstream in the MAPK pathway. For example, combination of BRAF/MEK inhibitors (e.g., dabrafenib/trametinib) have been demonstrated to improve survival compared to monotherapy. Application of novel technologies such sequencing have proven useful as a tool for identification of MAPK pathway-alternative resistance mechanism and designing other combinatorial therapies such as those between BRAF and AKT inhibitors. Improved survival rates have also been observed with immune-targeted therapy for patients with metastatic melanoma. Immune-modulating antibodies came to the forefront with anti-CTLA-4, programmed cell death-1 (PD-1) and PD-1 ligand 1 (PD-L1) pathway blocking antibodies that result in durable responses in a subset of melanoma patients. Agents targeting other immune inhibitory (e.g., Tim-3) or immune stimulating (e.g., CD137) receptors and other approaches such as adoptive cell transfer demonstrate clinical benefit in patients with melanoma as well. These agents are being studied in combination with targeted therapies in attempt to produce longer-term responses than those more typically seen with targeted therapy. Other combinations with cytotoxic chemotherapy and inhibitors of angiogenesis are changing the evolving landscape of therapeutic options and are being evaluated to prevent or delay resistance and to further improve survival rates for this patient population. This meeting's specific focus was on advances in combination of targeted therapy and immunotherapy. Both combination targeted therapy approaches and different immunotherapies were discussed. Similarly to the previous meetings, the importance of biomarkers for clinical application as markers for diagnosis, prognosis and prediction of treatment response was an integral part of the meeting. The overall emphasis on biomarkers supports novel concepts toward integrating biomarkers into contemporary clinical management of patients with melanoma across the entire spectrum of disease stage. Translation of the knowledge gained from the biology of tumor microenvironment across different tumors represents a bridge to impact on prognosis and response to therapy in melanoma.
    Type of Publication: Journal article published
    PubMed ID: 26619946
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: CANCER ; CANCER CELLS ; CELLS ; EXPRESSION ; tumor ; TUMOR-CELLS ; Germany ; GENE ; GENES ; PROTEIN ; MONOCLONAL-ANTIBODY ; TUMORS ; RESPONSES ; ANTIGEN ; DOWN-REGULATION ; IMMUNE-RESPONSES ; antibodies ; antibody ; LESIONS ; SUBUNIT ; MUTATION ; colorectal cancer ; COLORECTAL-CANCER ; REGION ; CANCER-CELLS ; microsatellite instability ; MUTATIONS ; BETA ; MONOCLONAL-ANTIBODIES ; MHC CLASS-I ; PHENOTYPE ; SUBUNITS ; IMMUNE-RESPONSE ; SPONTANEOUS REGRESSION ; T-LYMPHOCYTES ; beta(2)-microglobulin ; IMMUNE ESCAPE ; RENAL-CELL CARCINOMA ; FRAMESHIFT-MUTATION ; monoclonal antibody ; HLA-A ; MELANOMA LESIONS
    Abstract: In colorectal cancer, the immune response is particularly pronounced against tumors displaying the high microsatellite instability (MSI-H) phenotype. MSI-H tumors accumulate mutations affecting microsatellites located within protein encoding regions (coding microsatellites, cMS), which lead to translational shifts of the respective reading frames. Consequently, novel tumor-specific frameshift-derived neopeptides (FSP) are generated and presented by MSI-H tumor cells, thus eliciting effective cytotoxic immune responses. To analyze whether the immunoselective pressure was reflected by the phenotype of MSI-H colorectal cancer cells, we compared here the expression of antigen processing machinery (A-PM) components and human leukocyte antigen (HLA) class I antigen subunits in 20 MSI-H and 20 microsatellite-stable (MSS) colorectal cancer using a panel of newly developed APM component-specific monoclonal antibodies. In addition, we did a systematic analysis of mutations at cMS located within APM genes and beta 2-microglobulin (beta(2)M). Total HLA class I antigen loss was observed in 12 (60.0%) of the 20 MSI-H lesions compared with only 6 (30.0%) of the 20 MSS colorectal cancer lesions. Moreover, total loss of membraneous HLA-A staining was significantly more frequent in MSI-H colorectal cancer (P = 0.0024). Mutations at cMS of beta(2)m and genes encoding APM components (TAPI and TAP2) were detected in at least 7 (35.0%) of 20 MSI-H colorectal cancers but in none of the MSS colorectal cancers (P = 0.0002). These data show that defects of HLA class I antigen processing and presentation seem to be significantly more frequent in MSI-H than in MSS colorectal cancer, suggesting that in MSI-H colorectal cancer the immunoselective pressure leads to the outgrowth of cells with defects of antigen presentation
    Type of Publication: Journal article published
    PubMed ID: 16024646
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...