Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Abstract: Glucagon and thyroid hormone (T3) exhibit therapeutic potential for metabolic disease but also exhibit undesired effects. We achieved synergistic effects of these two hormones and mitigation of their adverse effects by engineering chemical conjugates enabling delivery of both activities within one precisely targeted molecule. Coordinated glucagon and T3 actions synergize to correct hyperlipidemia, steatohepatitis, atherosclerosis, glucose intolerance, and obesity in metabolically compromised mice. We demonstrate that each hormonal constituent mutually enriches cellular processes in hepatocytes and adipocytes via enhanced hepatic cholesterol metabolism and white fat browning. Synchronized signaling driven by glucagon and T3 reciprocally minimizes the inherent harmful effects of each hormone. Liver-directed T3 action offsets the diabetogenic liability of glucagon, and glucagon-mediated delivery spares the cardiovascular system from adverse T3 action. Our findings support the therapeutic utility of integrating these hormones into a single molecular entity that offers unique potential for treatment of obesity, type 2 diabetes, and cardiovascular disease.
    Type of Publication: Journal article published
    PubMed ID: 27720451
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    facet.materialart.
    The American Society for Pharmacology and Experimental Therapeutics (ASPET)
    Publication Date: 2018-08-08
    Description: With their ever-growing prevalence, obesity and diabetes represent major health threats of our society. Based on estimations by the World Health Organization, approximately 300 million people will be obese in 2035. In 2015 alone there were more than 1.6 million fatalities attributable to hyperglycemia and diabetes. In addition, treatment of these diseases places an enormous burden on our health care system. As a result, the development of pharmacotherapies to tackle this life-threatening pandemic is of utmost importance. Since the beginning of the 19th century, a variety of drugs have been evaluated for their ability to decrease body weight and/or to improve deranged glycemic control. The list of evaluated drugs includes, among many others, sheep-derived thyroid extracts, mitochondrial uncouplers, amphetamines, serotonergics, lipase inhibitors, and a variety of hormones produced and secreted by the gastrointestinal tract or adipose tissue. Unfortunately, when used as a single hormone therapy, most of these drugs are underwhelming in their efficacy or safety, and placebo-subtracted weight loss attributed to such therapy is typically not more than 10%. In 2009, the generation of a single molecule with agonism at the receptors for glucagon and the glucagon-like peptide 1 broke new ground in obesity pharmacology. This molecule combined the beneficial anorectic and glycemic effects of glucagon-like peptide 1 with the thermogenic effect of glucagon into a single molecule with enhanced potency and sustained action. Several other unimolecular dual agonists have subsequently been developed, and, based on their preclinical success, these molecules illuminate the path to a new and more fruitful era in obesity pharmacology. In this review, we focus on the historical pharmacological approaches to treat obesity and glucose intolerance and describe how the knowledge obtained by these studies led to the discovery of unimolecular polypharmacology.
    Print ISSN: 0031-6997
    Electronic ISSN: 1521-0081
    Topics: Chemistry and Pharmacology , Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-05-05
    Description: Integration of newly acquired genes into existing regulatory networks is necessary for successful horizontal gene transfer (HGT). Ten percent of bacterial species contain at least two DNA replicons over 300 kilobases in size, with the secondary replicons derived predominately through HGT. The Sinorhizobium meliloti genome is split between a 3.7 Mb chromosome, a 1.7 Mb chromid consisting largely of genes acquired through ancient HGT, and a 1.4 Mb megaplasmid consisting primarily of recently acquired genes. Here, RNA-sequencing is used to examine the transcriptional consequences of massive, synthetic genome reduction produced through the removal of the megaplasmid and/or the chromid. Removal of the pSymA megaplasmid influenced the transcription of only six genes. In contrast, removal of the chromid influenced expression of ~8% of chromosomal genes and ~4% of megaplasmid genes. This was mediated in part by the loss of the ETR DNA region whose presence on pSymB is due to a translocation from the chromosome. No obvious functional bias among the up-regulated genes was detected, although genes with putative homologs on the chromid were enriched. Down-regulated genes were enriched in motility and sensory transduction pathways. Four transcripts were examined further, and in each case the transcriptional change could be traced to loss of specific pSymB regions. In particularly, a chromosomal transporter was induced due to deletion of bdhA likely mediated through 3-hydroxybutyrate accumulation. These data provide new insights into the evolution of the multipartite bacterial genome, and more generally into the integration of horizontally acquired genes into the transcriptome.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...