Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-06-23
    Description: All cancers carry somatic mutations in their genomes. A subset, known as driver mutations, confer clonal selective advantage on cancer cells and are causally implicated in oncogenesis, and the remainder are passenger mutations. The driver mutations and mutational processes operative in breast cancer have not yet been comprehensively explored. Here we examine the genomes of 100 tumours for somatic copy number changes and mutations in the coding exons of protein-coding genes. The number of somatic mutations varied markedly between individual tumours. We found strong correlations between mutation number, age at which cancer was diagnosed and cancer histological grade, and observed multiple mutational signatures, including one present in about ten per cent of tumours characterized by numerous mutations of cytosine at TpC dinucleotides. Driver mutations were identified in several new cancer genes including AKT2, ARID1B, CASP8, CDKN1B, MAP3K1, MAP3K13, NCOR1, SMARCD1 and TBX3. Among the 100 tumours, we found driver mutations in at least 40 cancer genes and 73 different combinations of mutated cancer genes. The results highlight the substantial genetic diversity underlying this common disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3428862/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3428862/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stephens, Philip J -- Tarpey, Patrick S -- Davies, Helen -- Van Loo, Peter -- Greenman, Chris -- Wedge, David C -- Nik-Zainal, Serena -- Martin, Sancha -- Varela, Ignacio -- Bignell, Graham R -- Yates, Lucy R -- Papaemmanuil, Elli -- Beare, David -- Butler, Adam -- Cheverton, Angela -- Gamble, John -- Hinton, Jonathan -- Jia, Mingming -- Jayakumar, Alagu -- Jones, David -- Latimer, Calli -- Lau, King Wai -- McLaren, Stuart -- McBride, David J -- Menzies, Andrew -- Mudie, Laura -- Raine, Keiran -- Rad, Roland -- Chapman, Michael Spencer -- Teague, Jon -- Easton, Douglas -- Langerod, Anita -- Oslo Breast Cancer Consortium (OSBREAC) -- Lee, Ming Ta Michael -- Shen, Chen-Yang -- Tee, Benita Tan Kiat -- Huimin, Bernice Wong -- Broeks, Annegien -- Vargas, Ana Cristina -- Turashvili, Gulisa -- Martens, John -- Fatima, Aquila -- Miron, Penelope -- Chin, Suet-Feung -- Thomas, Gilles -- Boyault, Sandrine -- Mariani, Odette -- Lakhani, Sunil R -- van de Vijver, Marc -- van 't Veer, Laura -- Foekens, John -- Desmedt, Christine -- Sotiriou, Christos -- Tutt, Andrew -- Caldas, Carlos -- Reis-Filho, Jorge S -- Aparicio, Samuel A J R -- Salomon, Anne Vincent -- Borresen-Dale, Anne-Lise -- Richardson, Andrea L -- Campbell, Peter J -- Futreal, P Andrew -- Stratton, Michael R -- 077012/Z/05/Z/Wellcome Trust/United Kingdom -- 088340/Wellcome Trust/United Kingdom -- 093867/Wellcome Trust/United Kingdom -- 10118/Cancer Research UK/United Kingdom -- CA089393/CA/NCI NIH HHS/ -- P30 CA016672/CA/NCI NIH HHS/ -- WT088340MA/Wellcome Trust/United Kingdom -- Cancer Research UK/United Kingdom -- Chief Scientist Office/United Kingdom -- Department of Health/United Kingdom -- England -- Nature. 2012 May 16;486(7403):400-4. doi: 10.1038/nature11017.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22722201" target="_blank"〉PubMed〈/a〉
    Keywords: Age Factors ; Breast Neoplasms/classification/*genetics/pathology ; Cell Transformation, Neoplastic/*genetics ; Cytosine/metabolism ; DNA Mutational Analysis ; Female ; Humans ; JNK Mitogen-Activated Protein Kinases/metabolism ; Mutagenesis/*genetics ; Mutation/*genetics ; Neoplasm Grading ; Oncogenes/*genetics ; Reproducibility of Results ; Signal Transduction/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-03-31
    Description: Clinical responses to anticancer therapies are often restricted to a subset of patients. In some cases, mutated cancer genes are potent biomarkers for responses to targeted agents. Here, to uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we screened a panel of several hundred cancer cell lines--which represent much of the tissue-type and genetic diversity of human cancers--with 130 drugs under clinical and preclinical investigation. In aggregate, we found that mutated cancer genes were associated with cellular response to most currently available cancer drugs. Classic oncogene addiction paradigms were modified by additional tissue-specific or expression biomarkers, and some frequently mutated genes were associated with sensitivity to a broad range of therapeutic agents. Unexpected relationships were revealed, including the marked sensitivity of Ewing's sarcoma cells harbouring the EWS (also known as EWSR1)-FLI1 gene translocation to poly(ADP-ribose) polymerase (PARP) inhibitors. By linking drug activity to the functional complexity of cancer genomes, systematic pharmacogenomic profiling in cancer cell lines provides a powerful biomarker discovery platform to guide rational cancer therapeutic strategies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3349233/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3349233/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garnett, Mathew J -- Edelman, Elena J -- Heidorn, Sonja J -- Greenman, Chris D -- Dastur, Anahita -- Lau, King Wai -- Greninger, Patricia -- Thompson, I Richard -- Luo, Xi -- Soares, Jorge -- Liu, Qingsong -- Iorio, Francesco -- Surdez, Didier -- Chen, Li -- Milano, Randy J -- Bignell, Graham R -- Tam, Ah T -- Davies, Helen -- Stevenson, Jesse A -- Barthorpe, Syd -- Lutz, Stephen R -- Kogera, Fiona -- Lawrence, Karl -- McLaren-Douglas, Anne -- Mitropoulos, Xeni -- Mironenko, Tatiana -- Thi, Helen -- Richardson, Laura -- Zhou, Wenjun -- Jewitt, Frances -- Zhang, Tinghu -- O'Brien, Patrick -- Boisvert, Jessica L -- Price, Stacey -- Hur, Wooyoung -- Yang, Wanjuan -- Deng, Xianming -- Butler, Adam -- Choi, Hwan Geun -- Chang, Jae Won -- Baselga, Jose -- Stamenkovic, Ivan -- Engelman, Jeffrey A -- Sharma, Sreenath V -- Delattre, Olivier -- Saez-Rodriguez, Julio -- Gray, Nathanael S -- Settleman, Jeffrey -- Futreal, P Andrew -- Haber, Daniel A -- Stratton, Michael R -- Ramaswamy, Sridhar -- McDermott, Ultan -- Benes, Cyril H -- 086357/Wellcome Trust/United Kingdom -- 1U54HG006097-01/HG/NHGRI NIH HHS/ -- P41GM079575-02/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Mar 28;483(7391):570-5. doi: 10.1038/nature11005.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22460902" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line, Tumor ; Cell Survival/drug effects ; Drug Resistance, Neoplasm/drug effects/*genetics ; *Drug Screening Assays, Antitumor ; Gene Expression Regulation, Neoplastic/genetics ; Genes, Neoplasm/*genetics ; Genetic Markers/*genetics ; Genome, Human/*genetics ; Genomics ; Humans ; Indoles/pharmacology ; Neoplasms/*drug therapy/*genetics/pathology ; Oncogene Proteins, Fusion/genetics ; Pharmacogenetics ; Phthalazines/pharmacology ; Piperazines/pharmacology ; Poly(ADP-ribose) Polymerase Inhibitors ; Proto-Oncogene Protein c-fli-1/genetics ; RNA-Binding Protein EWS/genetics ; Sarcoma, Ewing/drug therapy/genetics/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-16
    Description: All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, 'kataegis', is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3776390/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3776390/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alexandrov, Ludmil B -- Nik-Zainal, Serena -- Wedge, David C -- Aparicio, Samuel A J R -- Behjati, Sam -- Biankin, Andrew V -- Bignell, Graham R -- Bolli, Niccolo -- Borg, Ake -- Borresen-Dale, Anne-Lise -- Boyault, Sandrine -- Burkhardt, Birgit -- Butler, Adam P -- Caldas, Carlos -- Davies, Helen R -- Desmedt, Christine -- Eils, Roland -- Eyfjord, Jorunn Erla -- Foekens, John A -- Greaves, Mel -- Hosoda, Fumie -- Hutter, Barbara -- Ilicic, Tomislav -- Imbeaud, Sandrine -- Imielinski, Marcin -- Jager, Natalie -- Jones, David T W -- Jones, David -- Knappskog, Stian -- Kool, Marcel -- Lakhani, Sunil R -- Lopez-Otin, Carlos -- Martin, Sancha -- Munshi, Nikhil C -- Nakamura, Hiromi -- Northcott, Paul A -- Pajic, Marina -- Papaemmanuil, Elli -- Paradiso, Angelo -- Pearson, John V -- Puente, Xose S -- Raine, Keiran -- Ramakrishna, Manasa -- Richardson, Andrea L -- Richter, Julia -- Rosenstiel, Philip -- Schlesner, Matthias -- Schumacher, Ton N -- Span, Paul N -- Teague, Jon W -- Totoki, Yasushi -- Tutt, Andrew N J -- Valdes-Mas, Rafael -- van Buuren, Marit M -- van 't Veer, Laura -- Vincent-Salomon, Anne -- Waddell, Nicola -- Yates, Lucy R -- Australian Pancreatic Cancer Genome Initiative -- ICGC Breast Cancer Consortium -- ICGC MMML-Seq Consortium -- ICGC PedBrain -- Zucman-Rossi, Jessica -- Futreal, P Andrew -- McDermott, Ultan -- Lichter, Peter -- Meyerson, Matthew -- Grimmond, Sean M -- Siebert, Reiner -- Campo, Elias -- Shibata, Tatsuhiro -- Pfister, Stefan M -- Campbell, Peter J -- Stratton, Michael R -- 088340/Wellcome Trust/United Kingdom -- 093867/Wellcome Trust/United Kingdom -- 098051/Wellcome Trust/United Kingdom -- T32 CA009216/CA/NCI NIH HHS/ -- England -- Nature. 2013 Aug 22;500(7463):415-21. doi: 10.1038/nature12477. Epub 2013 Aug 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23945592" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/genetics ; Algorithms ; Cell Transformation, Neoplastic/*genetics/pathology ; Cytidine Deaminase/genetics ; DNA/genetics/metabolism ; DNA Mutational Analysis ; Humans ; Models, Genetic ; Mutagenesis/*genetics ; Mutagenesis, Insertional/genetics ; Mutagens/pharmacology ; Mutation/*genetics ; Neoplasms/enzymology/*genetics/pathology ; Organ Specificity ; Reproducibility of Results ; Sequence Deletion/genetics ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0983
    Keywords: Key wordsLipomyces starkeyi ; Electrophoretic karyotype ; CHEF ; TRP1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The genome of the amylolytic yeast strain Lipomyces starkeyi NCYC 1436 was analysed using contour-clamped homogeneous electric field gel electrophoresis (CHEF). The banding pattern under a variety of running conditions indicating the presence of 11 different chromosome-sized DNA molecules. The sizes of these chromosome bands were determined by comparison with chromosomes from standard strains of Schizosaccharomyces pombe and Saccharomyces cerevisiae. The chromosomal bands were estimated to be within the range 0.7–2.8 Mb, with the genome (excluding mitochondrial DNA) estimated at 15 Mb. The molecular cloning of the TRP1 gene, isolated from a genomic library of this strain, is also reported: the gene was present on a 6.5-kb Sau3A DNA fragment, and complemented the trpC gene of E. coli. The DNA sequence was determined (EMBL accession No. Z68292) and compared to other tryptophan biosynthetic genes encoding N-(5′-phosphoribosyl) anthranilate isomerase (PRAI) activity. The gene was also used as a probe in hybridization studies, and by this means, its chromosomal location was identified.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1572-9699
    Keywords: glucoamylase ; STA ; PFGE ; CHEF
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The chromosomal locations of four glucoamylase-specifying genes in the yeastSaccharomyces cerevisiae have been determined. Chromosomes were separated by pulsed field gel electrophoresis and blots were probed with radiolabelledSTA2 and marker DNA from specific yeast chromosomes. The three genes encoding extracellular glucoamylases,STA1 (DEX2), STA2 (DEX1) andSTA3 (DEX3) are located on chromosomes IV, II and XIV, respectively.SGA, specifying the sporulation-specific glucoamylase, was positioned on chromosome IX.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...