Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-02-11
    Description: Telomere dysfunction activates p53-mediated cellular growth arrest, senescence and apoptosis to drive progressive atrophy and functional decline in high-turnover tissues. The broader adverse impact of telomere dysfunction across many tissues including more quiescent systems prompted transcriptomic network analyses to identify common mechanisms operative in haematopoietic stem cells, heart and liver. These unbiased studies revealed profound repression of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha and beta (PGC-1alpha and PGC-1beta, also known as Ppargc1a and Ppargc1b, respectively) and the downstream network in mice null for either telomerase reverse transcriptase (Tert) or telomerase RNA component (Terc) genes. Consistent with PGCs as master regulators of mitochondrial physiology and metabolism, telomere dysfunction is associated with impaired mitochondrial biogenesis and function, decreased gluconeogenesis, cardiomyopathy, and increased reactive oxygen species. In the setting of telomere dysfunction, enforced Tert or PGC-1alpha expression or germline deletion of p53 (also known as Trp53) substantially restores PGC network expression, mitochondrial respiration, cardiac function and gluconeogenesis. We demonstrate that telomere dysfunction activates p53 which in turn binds and represses PGC-1alpha and PGC-1beta promoters, thereby forging a direct link between telomere and mitochondrial biology. We propose that this telomere-p53-PGC axis contributes to organ and metabolic failure and to diminishing organismal fitness in the setting of telomere dysfunction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3741661/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3741661/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sahin, Ergun -- Colla, Simona -- Liesa, Marc -- Moslehi, Javid -- Muller, Florian L -- Guo, Mira -- Cooper, Marcus -- Kotton, Darrell -- Fabian, Attila J -- Walkey, Carl -- Maser, Richard S -- Tonon, Giovanni -- Foerster, Friedrich -- Xiong, Robert -- Wang, Y Alan -- Shukla, Sachet A -- Jaskelioff, Mariela -- Martin, Eric S -- Heffernan, Timothy P -- Protopopov, Alexei -- Ivanova, Elena -- Mahoney, John E -- Kost-Alimova, Maria -- Perry, Samuel R -- Bronson, Roderick -- Liao, Ronglih -- Mulligan, Richard -- Shirihai, Orian S -- Chin, Lynda -- DePinho, Ronald A -- P30 DK046200/DK/NIDDK NIH HHS/ -- P30DK079638/DK/NIDDK NIH HHS/ -- R01 CA084628/CA/NCI NIH HHS/ -- R01 DK035914/DK/NIDDK NIH HHS/ -- R01 DK056690/DK/NIDDK NIH HHS/ -- R01 DK063356/DK/NIDDK NIH HHS/ -- R01 DK089185/DK/NIDDK NIH HHS/ -- U24 DK-59635/DK/NIDDK NIH HHS/ -- England -- Nature. 2011 Feb 17;470(7334):359-65. doi: 10.1038/nature09787. Epub 2011 Feb 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21307849" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/biosynthesis ; Aging/metabolism/pathology ; Animals ; Cardiomyopathies/chemically induced/metabolism/pathology/physiopathology ; Cell Proliferation ; DNA, Mitochondrial/analysis ; Doxorubicin/toxicity ; Gluconeogenesis ; Hematopoietic Stem Cells/metabolism/pathology ; Liver/cytology/metabolism ; Mice ; Mitochondria/*metabolism/*pathology ; Myocardium/cytology/metabolism ; RNA/genetics ; Reactive Oxygen Species/metabolism ; Telomerase/deficiency/genetics ; Telomere/enzymology/genetics/*metabolism/*pathology ; Transcription Factors/antagonists & inhibitors/metabolism ; Tumor Suppressor Protein p53/deficiency/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-08-19
    Description: T-cell acute lymphoblastic leukaemia (T-ALL) is a haematological malignancy with a dismal overall prognosis, including a relapse rate of up to 25%, mainly because of the lack of non-cytotoxic targeted therapy options. Drugs that target the function of key epigenetic factors have been approved in the context of haematopoietic disorders, and mutations that affect chromatin modulators in a variety of leukaemias have recently been identified; however, 'epigenetic' drugs are not currently used for T-ALL treatment. Recently, we described that the polycomb repressive complex 2 (PRC2) has a tumour-suppressor role in T-ALL. Here we delineated the role of the histone 3 lysine 27 (H3K27) demethylases JMJD3 and UTX in T-ALL. We show that JMJD3 is essential for the initiation and maintenance of T-ALL, as it controls important oncogenic gene targets by modulating H3K27 methylation. By contrast, we found that UTX functions as a tumour suppressor and is frequently genetically inactivated in T-ALL. Moreover, we demonstrated that the small molecule inhibitor GSKJ4 (ref. 5) affects T-ALL growth, by targeting JMJD3 activity. These findings show that two proteins with a similar enzymatic function can have opposing roles in the context of the same disease, paving the way for treating haematopoietic malignancies with a new category of epigenetic inhibitors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209203/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209203/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ntziachristos, Panagiotis -- Tsirigos, Aristotelis -- Welstead, G Grant -- Trimarchi, Thomas -- Bakogianni, Sofia -- Xu, Luyao -- Loizou, Evangelia -- Holmfeldt, Linda -- Strikoudis, Alexandros -- King, Bryan -- Mullenders, Jasper -- Becksfort, Jared -- Nedjic, Jelena -- Paietta, Elisabeth -- Tallman, Martin S -- Rowe, Jacob M -- Tonon, Giovanni -- Satoh, Takashi -- Kruidenier, Laurens -- Prinjha, Rab -- Akira, Shizuo -- Van Vlierberghe, Pieter -- Ferrando, Adolfo A -- Jaenisch, Rudolf -- Mullighan, Charles G -- Aifantis, Iannis -- 1R01CA105129/CA/NCI NIH HHS/ -- 1R01CA133379/CA/NCI NIH HHS/ -- 1R01CA149655/CA/NCI NIH HHS/ -- 5 T32 CA009161-37/CA/NCI NIH HHS/ -- 5P30CA16087-31/CA/NCI NIH HHS/ -- 5R01CA169784/CA/NCI NIH HHS/ -- 5R01CA173636/CA/NCI NIH HHS/ -- K99 CA188293/CA/NCI NIH HHS/ -- K99CA188293/CA/NCI NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- P30 CA016087/CA/NCI NIH HHS/ -- P30 CA016087-30/CA/NCI NIH HHS/ -- P30 CA021765/CA/NCI NIH HHS/ -- R01 CA105129/CA/NCI NIH HHS/ -- R01 CA133379/CA/NCI NIH HHS/ -- R01 CA149655/CA/NCI NIH HHS/ -- R01 CA173636/CA/NCI NIH HHS/ -- R01CA120196/CA/NCI NIH HHS/ -- R37 HD045022/HD/NICHD NIH HHS/ -- R37-HD04502/HD/NICHD NIH HHS/ -- U10 CA180820/CA/NCI NIH HHS/ -- U10 CA180827/CA/NCI NIH HHS/ -- U10 CA21115/CA/NCI NIH HHS/ -- U24 CA114737/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Oct 23;514(7523):513-7. doi: 10.1038/nature13605. Epub 2014 Aug 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, New York 10016, USA [2] NYU Cancer Institute and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, New York 10016, USA [3]. ; 1] Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, New York 10016, USA [2] Center for Health Informatics and Bioinformatics, NYU School of Medicine, New York, New York 10016, USA [3]. ; 1] Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [3]. ; 1] Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, New York 10016, USA [2] NYU Cancer Institute and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, New York 10016, USA. ; Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA. ; Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; Montefiore Medical Center North, Bronx, New York, New York 10467, USA. ; Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; 1] Technion, Israel Institute of Technology, Haifa 31096, Israel [2] Shaare Zedek Medical Center, Jerusalem 9103102, Israel. ; Functional Genomics of Cancer Unit, Division of Molecular Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy. ; 1] Laboratory of Host Defense, WPI Immunology Frontier Research Center (WPI IFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan [2] Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1Yamada-oka, Suita, Osaka 565-0871, Japan. ; Epinova DPU, Immuno-Inflammation Therapy Area, GlaxoSmithKline R&D, Medicines Research Centre, GunnelsWood Road, Stevenage SG1 2NY, UK. ; 1] Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA [2] Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium. ; 1] Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA [2] Department of Pathology, Columbia University Medical Center, New York, New York 10032, USA [3] Department of Pediatrics, Columbia University Medical Center, New York, New York 10032, USA. ; 1] Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25132549" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Benzazepines/pharmacology ; Epigenesis, Genetic/drug effects ; Histone Demethylases/genetics/*metabolism ; Histones/chemistry/metabolism ; Jumonji Domain-Containing Histone Demethylases/antagonists & ; inhibitors/*metabolism ; Lysine/metabolism ; Methylation/drug effects ; Mice ; Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug ; therapy/*enzymology/genetics/pathology ; Pyrimidines/pharmacology ; Tumor Suppressor Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: GROWTH-FACTOR ; proliferation ; liver ; SITE ; METABOLISM ; MICE ; ACTIVATED PROTEIN-KINASE ; RABBIT SKELETAL-MUSCLE ; PHOSPHORYLASE-KINASE ; CANCER GENOMICS
    Abstract: The rapid proliferation of myeloid leukemia cells is highly dependent on increased glucose metabolism. Through an unbiased metabolomics analysis of leukemia cells, we found that the glycogenic precursor UDP-D-glucose is pervasively upregulated, despite low glycogen levels. Targeting the rate-limiting glycogen synthase 1 (GYS1) not only decreased glycolytic flux but also increased activation of the glycogen-responsive AMP kinase (AMPK), leading to significant growth suppression. Further, genetic and pharmacological hyper-activation of AMPK was sufficient to induce the changes observed with GYS1 targeting. Cancer genomics data also indicate that elevated levels of the glycogenic enzymes GYS1/2 or GBE1 (glycogen branching enzyme 1) are associated with poor survival in AML. These results suggest a novel mechanism whereby leukemic cells sustain aberrant proliferation by suppressing excess AMPK activity through elevated glycogenic flux and provide a therapeutic entry point for targeting leukemia cell metabolism.
    Type of Publication: Journal article published
    PubMed ID: 25703587
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
  • 5
  • 6
    Keywords: ANGIOGENESIS ; EXPRESSION ; IN-VIVO ; LINES ; ACTIVATION ; PROGRESSION ; INTEGRIN ; STROMAL CELLS ; INTERLEUKIN-6 ; MEDIATED DRUG-RESISTANCE
    Abstract: Recent advances regarding the introduction of anti-adhesion strategies as a novel therapeutic concept in oncology hold great promise. Here we evaluated the therapeutic potential of the new-in-class-molecule selective-adhesion-molecule (SAM) inhibitor Natalizumab, a recombinant humanized IgG4 monoclonal antibody, which binds integrin-alpha4, in multiple myeloma (MM). Natalizumab, but not a control antibody, inhibited adhesion of MM cells to non-cellular and cellular components of the microenvironment as well as disrupted the binding of already adherent MM cells. Consequently, Natalizumab blocked both the proliferative effect of MM-bone marrow (BM) stromal cell interaction on tumour cells, and vascular endothelial growth factor (VEGF)-induced angiogenesis in the BM milieu. Moreover, Natalizumab also blocked VEGF- and insulin-like growth factor 1 (IGF-1)-induced signalling sequelae triggering MM cell migration. In agreement with our in vitro results, Natalizumab inhibited tumour growth, VEGF secretion, and angiogenesis in a human severe combined immunodeficiency murine model of human MM in the human BM microenvironment. Importantly, Natalizumab not only blocked tumour cell adhesion, but also chemosensitized MM cells to bortezomib, in an in vitro therapeutically representative human MM-stroma cell co-culture system model. Our data therefore provide the rationale for the clinical evaluation of Natalizumab, preferably in combination with novel agents (e.g. bortezomib) to enhance MM cytotoxicity and improve patient outcome.
    Type of Publication: Journal article published
    PubMed ID: 21923653
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Abstract: Despite therapeutic advances, multiple myeloma (MM) remains an incurable disease, predominantly due to the development of drug resistance. The activator protein-1 (AP-1) transcription factor family has been implicated in a multitude of physiologic processes and tumorigenesis; however, its role in MM is largely unknown. Here we demonstrate specific and rapid induction of the AP-1 family member JunB in MM cells when co-cultured with bone marrow stromal cells. Supporting a functional key role of JunB in MM pathogenesis, knockdown of JUNB significantly inhibited in vitro MM cell proliferation and survival. Consistently, induced silencing of JUNB markedly decreased tumor growth in a murine MM model of the microenvironment. Subsequent gene expression profiling revealed a role for genes associated with apoptosis, DNA replication and metabolism in driving the JunB-mediated phenotype in MM cells. Importantly, knockdown of JUNB restored the response to dexamethasone in dexamethasone-resistant MM cells. Moreover, 4-hydroxytamoxifen-induced activation of a JunB-ER fusion protein protected dexamethasone-sensitive MM cells against dexamethasone- and bortezomib- induced cytotoxicity. In summary, our results demonstrate for the first time a specific role for AP-1/JunB in MM cell proliferation, survival and drug resistance, thereby strongly supporting that this transcription factor is a promising new therapeutic target in MM.Leukemia accepted article preview online, 28 November 2016. doi:10.1038/leu.2016.358.
    Type of Publication: Journal article published
    PubMed ID: 27890927
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Abstract: Transposons and gamma-retroviruses have been efficiently used as insertional mutagens in different tissues to identify molecular culprits of cancer. However, these systems are characterized by recurring integrations that accumulate in tumor cells and that hamper the identification of early cancer-driving events among bystander and progression-related events. We developed an insertional mutagenesis platform based on lentiviral vectors (LVVs) by which we could efficiently induce hepatocellular carcinoma (HCC) in three different mouse models. By virtue of the LVV's replication-deficient nature and broad genome-wide integration pattern, LVV-based insertional mutagenesis allowed identification of four previously unknown liver cancer-associated genes from a limited number of integrations. We validated the oncogenic potential of all the identified genes in vivo, with different levels of penetrance. The newly identified genes are likely to play a role in human cancer because they are upregulated, amplified and/or deleted in human HCCs and can predict clinical outcomes of patients.
    Type of Publication: Journal article published
    PubMed ID: 23314173
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: EXPRESSION ; SURVIVAL ; PATHWAY ; PROTEIN ; DIFFERENTIATION ; CLEAVAGE ; DEGRADATION ; BORTEZOMIB ; ANTI-APOPTOTIC MCL-1 ; NOXA
    Abstract: Myeloid cell leukemia-1 (Mcl-1, HGNC: 6943), a pro-survival member of the Bcl-2 family, plays a crucial role in Multiple Myeloma (MM) pathogenesis and drug resistance, thus representing a promising therapeutic target in MM. A novel strategy to inhibit Mcl-1 activity is the induction of ubiquitin-independent Mcl-1 degradation. Our own and other previous studies have demonstrated caspase-dependent generation of a 28kDa Mcl-1 fragment, Mcl-1(128-350), which inhibits MM cell proliferation and survival. Here, we show that similar to bortezomib, the novel proteasome inhibitors carfilzomib and ixazomib, as well as staurosporine and adaphostin, induce the generation of Mcl-1(128-350) in MM cells. Next, the molecular sequelae downstream of Mcl-1(128-350), which mediate its pro-apoptotic activity, were delineated. Surprisingly, we observed nuclear accumulation of drug-induced or exogenously overexpressed Mcl-1(128-350), followed by elevated mRNA and protein levels of c-Jun, as well as enhanced AP-1 reporter activity. Moreover, drug-induced AP-1 activity was blocked after introducing a point mutation into the highly conserved Mcl-1 caspase-cleavage site Asp127, but not Asp157. Consequently, drug-triggered cell death was significantly decreased in MM cells transfected with Mcl-1 D127A, but not with Mcl-1 D157A. Consistent with these data, treatment with bortezomib triggered c-Jun upregulation followed by apoptosis in Mcl-1(wt/wt), but not Mcl-1(Delta/null) murine embryonic fibroblasts (MEFs). Transfection of a plasmid carrying Mcl-1(wt) into Mcl-1(Delta/null) MEFs restored bortezomib-induced Mcl-1 fragmentation, c-Jun upregulation and AP-1 reporter activity. Finally, our data indicate that drug-induced generation of a pro-apoptotic Mcl-1 fragment followed by c-Jun upregulation may also be a novel therapeutic approach in other tumor entities.
    Type of Publication: Journal article published
    PubMed ID: 24120758
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...