Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: EXPRESSION ; IN-VITRO ; DISTINCT ; DIFFERENTIATION ; MESSENGER-RNA ; murine ; KERATINOCYTES ; EPIDERMAL DIFFERENTIATION ; ARACHIDONIC-ACID ; calcium gradient ; ENHANCING FACTOR ; epidermal barrier ; GROUP-II ; GROUP-V ; GROUP-X ; hyperproliferation ; INVITRO CULTIVATION ; LOW-MOLECULAR-WEIGHT ; neonatal mouse ; NEONATAL MOUSE KERATINOCYTES ; PERMEABILITY BARRIER HOMEOSTASIS ; epidermis
    Abstract: The action of secreted phospholipases A(2) in skin is thought to be essential for epidermal barrier homeostasis. The incomplete knowledge of presence and functions of the novel secreted phospholipase A(2) subtypes in skin prompted us to explore their expression in epidermis and primary keratinocytes from murine neonatal skin. We detected secreted phospholipases A(2) -IB, -IIA, -IIC, -IID, -IIE, -IIF, -V, -X, and -XII. To study secreted phospholipase A(2) expression during epidermal differentiation, primary keratinocytes from the basal, suprabasal, and upper differentiated layers of neonatal mouse epidermis were obtained by density gradient centrifugation. mRNA for secreted phospholipases A(2) -IB, -IIE, -IIF, -V, and -XII-1 are mainly expressed in the upper differentiated layers, whereas the most prominent enzymes in the basal and suprabasal layers are secreted phospholipases A(2) -IIA, -IID, and -X. The mRNA for secreted phospholipase A(2) -IIC was found in all fractions. Immunohistochemical analysis in mouse skin sections reflected the mRNA distribution patterns in the different epidermal cell fractions. After in vitro induction of keratinocyte differentiation by increasing the calcium concentration of the medium, secreted phospholipases A(2) -IB, -IIE, -IIF, -V, and -XII-1 were upregulated, whereas secreted phospholipases A(2) -IIA, -IIC, -IID, and -X were mainly expressed in proliferating keratinocytes. The specific secreted phospholipase A(2) expression profile in the skin suggests a distinct function for each enzyme in the epidermis
    Type of Publication: Journal article published
    PubMed ID: 12839576
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...