ISSN:
1432-5217

Keywords:
Convex programming
;
semi-infinite programming
;
linear representation of convex sets
;
duality diagrams

Source:
Springer Online Journal Archives 1860-2000

Topics:
Mathematics
,
Economics

Description / Table of Contents:
Zusammenfassung Die Optimierung einer linearen Funktion auf einer konvexen abgeschlossenen MengeF kann als semi-infinites lineares Programm aufgefaßt werden, daF als Durchschnitt (unendlich) vieler Halbräume dargestellt werden kann. Es werden Dualitätseigenschaften dieser Programme untersucht, wobei von verschiedenen linearen Darstellungen fürF ausgegangen wird. Die Arbeit enthält Sätze über Dualitätsbeziehungen von Farkas-Minkowski, kanonisch abgeschlossene, kompakte und abgeschlossene Systeme. Es werden auch umgekehrte Beziehungen angegeben.

Notes:
Abstract The optimization of a linear function on a closed convex set,F, can be stated as a linear semi-infinite program, sinceF is the solution set of (usually) infinite linear inequality systems, the so-called linear representations ofF. The duality properties of these programs are analyzed when the linear representation ofF ranges in some well known classes of linear inequality systems. This paper provides propositions on the duality diagrams of Farkas-Minkowski, canonically closed, compact and closed systems. Converse statements are also given.

Type of Medium:
Electronic Resource

Permalink