Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Abstract: Controversy revolves around the differential contribution of NR2A- and NR2B-containing NMDA receptors, which coexist in principal forebrain neurons, to synaptic plasticity and learning in the adult brain. Here, we report genetically modified mice in which the NR2B subunit is selectively ablated in principal neurons of the entire postnatal forebrain or only the hippocampus. NR2B ablation resulted in smaller NMDA receptor-mediated EPSCs with accelerated decay kinetics, as recorded in CA1 pyramidal cells. CA3-to-CA1 field LTP remained largely unaltered, although a pairing protocol revealed decreased NMDA receptor-mediated charge transfer and reduced cellular LTP. Mice lacking NR2B in the forebrain were impaired on a range of memory tasks, presenting both spatial and nonspatial phenotypes. In contrast, hippocampus-specific NR2B ablation spared hippocampus-dependent, hidden-platform water maze performance but induced a selective, short-term, spatial working memory deficit for recently visited places. Thus, both hippocampal and extra-hippocampal NR2B containing NMDA receptors critically contribute to spatial performance.
    Type of Publication: Journal article published
    PubMed ID: 19081379
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: brain ; EXPRESSION ; Germany ; DEATH ; NEW-YORK ; GENE ; GENES ; GENOME ; TISSUE ; FAMILY ; TISSUES ; BIOLOGY ; MEMBERS ; MOLECULAR-BIOLOGY ; chromosome ; MOUSE ; NO ; STAGE ; DISRUPTION ; MUTATION ; genetics ; REGION ; REGIONS ; CARRIERS ; TRANSLOCATION ; heredity ; DOMAINS ; LETHALITY ; molecular biology ; molecular ; FAMILIES ; LEADS ; CANDIDATE GENES ; GENE FAMILY ; LEVEL ; autism ; USA ; CANDIDATE ; microbiology ; biotechnology ; DYSFUNCTION ; FETAL ; breakpoint ; CNTNAP2 ; K+ CHANNELS ; MYELINATED AXONS ; NEUREXIN SUPERFAMILY
    Abstract: We have previously described the paralogous mouse genes Caspr5-1, -2, and -3 of the neurexin gene family. Here we present the cytogenetic and molecular mapping of a null mutation of Caspr5-2 which was caused by reciprocal translocation between chromosomes 1 and 8 with breakpoints at bands 1E2.1 and 8B2.1, respectively. The translocation disrupts Caspr5-2 between exons 1 and 2 and causes stillbirth or early postnatal lethality of homozygous carriers. Because no other candidate genes were found, the disruption of Caspr5-2 is most likely the cause of lethality. Only rarely do homozygotes survive the critical stage, reach fertility, and are then apparently normal. They may be rescued by one of the two other Caspr5 paralogs. Caspr5-2 is expressed in spinal cord and brain tissues. Despite giving special attention to regions where in wild-type fetuses maximum expression was found, no malformation that might have caused death could be detected in fetal homozygous carriers of the translocation. We, therefore, suspect that Caspr5-2 disruption leads to dysfunction at the cellular level rather than at the level of organ development
    Type of Publication: Journal article published
    PubMed ID: 18949514
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: brain ; EXPRESSION ; SYSTEM ; GENES ; MICE ; DISRUPTION ; CORTEX ; autism ; NEURONAL PATTERNS ; AMPA
    Abstract: In postnatal development, GluN2B-containing NMDARs are critical for the functional maturation of glutamatergic synapses. GluN2B-containing NMDARs prevail until the second postnatal week when GluN2A subunits are progressively added, conferring mature properties to NMDARs. In cortical principal neurons, deletion of GluN2B results in an increase in functional AMPAR synapses, suggesting that GluN2B-containing NMDARs set a brake on glutamate synapse maturation. The function of GluN2B in the maturation of glutamatergic inputs to cortical interneurons is not known. To examine the function of GluN2B in interneurons, we generated mutant mice with conditional deletion of GluN2B in interneurons (GluN2B(DeltaGAD67)). In GluN2B(DeltaGAD67) mice interneurons distributed normally in cortical brain regions. After the second postnatal week, GluN2B(DeltaGAD67) mice developed hippocampal seizures and died shortly thereafter. Before the onset of seizures, GluN2B-deficient hippocampal interneurons received fewer glutamatergic synaptic inputs than littermate controls, indicating that GluN2B-containing NMDARs positively regulate the maturation of glutamatergic input synapses in interneurons. These findings suggest that GluN2B-containing NMDARs keep the circuit activity under control by promoting the maturation of excitatory synapses in interneurons.
    Type of Publication: Journal article published
    PubMed ID: 25429143
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...