Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0887-3585
    Keywords: folding mutant ; proline isomerization ; folding kinetics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The replacement of tryptophan 59 of ribonuclease T1 by a tyrosine residue does not change the stability of the protein. However, it leads to a strong acceleration of a major, proline-limited reaction that is unusually slow in the refolding of the wild-type protein. The distribution of fast- and slow-folding species and the kinetic mechanism of slow folding are not changed by the mutation. Trp-59 is in close contact to Pro-39 in native RNase T1 and probably also in an intermediate that forms rapidly during folding. We suggest that this specific interaction interferes with the trans→cis reisomerization of the Tyr-38-Pro-39 bond at the stage of a native-like folding intermediate. The steric hindrance is abolished either by changing Trp-59 to a less bulky residue, such as tyrosine, or, by a destabilization of folding intermediates at increased concentrations of denaturant. Under such conditions folding of the wild-type protein and of the W59Y variant no longer differ. These results provide strong support for the proposal that trans→cis isomerization of Pro-39 is responsible for the major, very slow refolding reaction of RNase T1. They also indicate that specific tertiary interactions in folding intermediates do exist, but do not necessarily facilitate folding. They can have adverse effects and decelerate ratelimiting steps by trapping partially folded structures.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1831
    Keywords: Key words Human rhinovirus 14 ; Intercellular adhesion molecule-1 ; Virus entry ; Susceptibility
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Virus adsorption and uptake of human rhinovirus 14 (HRV14) were studied with HeLa cells and baby hamster kidney (BHK) cells which were transfected with the HRV14 receptor intercellular adhesion molecule-1 (ICAM-1). Transmission electron microscopy of HeLa cells revealed that HRV14 was internalized via clathrin-coated pits and -coated vesicles. A minority of virus particles also used uncoated vesicles for entry. The internalization showed the characteristics of receptor-mediated endocytosis. Presence of the carboxylic ionophore monensin inhibited viral uncoating, indicating a pH-dependent entry mechanism. The expression of ICAM-1 on the surface of the ICAM-1 transfected baby hamster kidney cells (BHK-ICAM cells) allowed extensive virus adsorption and internalization through membrane channels. Virus particles were lined up in these channels like pearls on a string, but did not induce a productive infection. Although ICAM-1 was expressed to the same degree on BHK-ICAM and HeLa cells, HRV14 induced neither viral protein and RNA syntheses nor infectious virus progeny in BHK-ICAM cells. ICAM-1 on the transfected BHK cells was a functional active receptor as it rendered these cells permissive to coxsackievirus A21. These results suggest that HRV14 uptake into BHK-ICAM cells is blocked directly in or shortly after its final step of internalization, the uncoating. Our findings underline that the receptor ICAM-1 determines virus uptake into cells, however, is not sufficient to confer susceptibility of BHK cells to HRV14 infection.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...