Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Abstract: OBJECTIVE Recent studies have established that hemispheric diffuse gliomas may be grouped into subsets on the basis of molecular markers; these subsets are loosely correlated with the histopathological diagnosis but are strong predictors of clinical tumor behavior. Based on an analysis of molecular and clinical parameters, the authors hypothesized that mutations of the telomerase promoter (TERTp-mut) mark separate oncogenic programs among isocitrate dehydrogenase 1 and/or 2 (IDH) mutant (IDH-mut) and IDH wild-type (IDH-wt) diffuse gliomas independent of histopathology or WHO grade. METHODS Four molecular subsets of the combined statuses of IDH and TERT-promoter mutations (double mutant, IDH only, TERT only, and double negative) were defined. Differences in age, anatomical location, molecular genetics, and survival rates in a surgical cohort of 299 patients with a total of 356 hemispheric diffuse gliomas (WHO Grade II, III, or IV) were analyzed. RESULTS TERTp-mut were present in 38.8% of IDH-mut and 70.2% of IDH-wt gliomas. The mutational status was stable in each patient at 57 recurrence events over a 2645-month cumulative follow-up period. Among patients with IDH-mut gliomas, those in the double-mutant subset had better survival and a lower incidence of malignant degeneration than those in the IDH-only subset. Of patients in the double-mutant subset, 96.3% were also positive for 1p/19q codeletions. All patients with 1p/19q codeletions had TERTp-mut. In patients with IDH-mut glioma, epidermal growth factor receptor or phosphatase and tensin homolog mutations were not observed, and copy-number variations were uncommon. Among IDH-wt gliomas, the TERT-only subset was associated with significantly higher age, higher Ki-67 labeling index, primary glioblastoma-specific oncogenic changes, and poor survival. The double-negative subset was genetically and biologically heterogeneous. Survival analyses (Kaplan-Meier, multivariate, and regression-tree analyses) confirmed that patients in the 4 molecular subsets had distinct prognoses. CONCLUSIONS Molecular subsets result in different tumor biology and clinical behaviors in hemispheric diffuse gliomas.
    Type of Publication: Journal article published
    PubMed ID: 28621624
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-01-26
    Description: We report genomic analysis of 300 meningiomas, the most common primary brain tumors, leading to the discovery of mutations in TRAF7, a proapoptotic E3 ubiquitin ligase, in nearly one-fourth of all meningiomas. Mutations in TRAF7 commonly occurred with a recurrent mutation (K409Q) in KLF4, a transcription factor known for its role in inducing pluripotency, or with AKT1(E17K), a mutation known to activate the PI3K pathway. SMO mutations, which activate Hedgehog signaling, were identified in ~5% of non-NF2 mutant meningiomas. These non-NF2 meningiomas were clinically distinctive-nearly always benign, with chromosomal stability, and originating from the medial skull base. In contrast, meningiomas with mutant NF2 and/or chromosome 22 loss were more likely to be atypical, showing genomic instability, and localizing to the cerebral and cerebellar hemispheres. Collectively, these findings identify distinct meningioma subtypes, suggesting avenues for targeted therapeutics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clark, Victoria E -- Erson-Omay, E Zeynep -- Serin, Akdes -- Yin, Jun -- Cotney, Justin -- Ozduman, Koray -- Avsar, Timucin -- Li, Jie -- Murray, Phillip B -- Henegariu, Octavian -- Yilmaz, Saliha -- Gunel, Jennifer Moliterno -- Carrion-Grant, Geneive -- Yilmaz, Baran -- Grady, Conor -- Tanrikulu, Bahattin -- Bakircioglu, Mehmet -- Kaymakcalan, Hande -- Caglayan, Ahmet Okay -- Sencar, Leman -- Ceyhun, Emre -- Atik, A Fatih -- Bayri, Yasar -- Bai, Hanwen -- Kolb, Luis E -- Hebert, Ryan M -- Omay, S Bulent -- Mishra-Gorur, Ketu -- Choi, Murim -- Overton, John D -- Holland, Eric C -- Mane, Shrikant -- State, Matthew W -- Bilguvar, Kaya -- Baehring, Joachim M -- Gutin, Philip H -- Piepmeier, Joseph M -- Vortmeyer, Alexander -- Brennan, Cameron W -- Pamir, M Necmettin -- Kilic, Turker -- Lifton, Richard P -- Noonan, James P -- Yasuno, Katsuhito -- Gunel, Murat -- T32 GM007205/GM/NIGMS NIH HHS/ -- T32GM07205/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Mar 1;339(6123):1077-80. doi: 10.1126/science.1233009. Epub 2013 Jan 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurosurgery, Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23348505" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Aged ; Aged, 80 and over ; Brain Neoplasms/classification/*genetics/pathology ; Chromosomes, Human, Pair 22/genetics ; DNA Mutational Analysis ; Female ; Genes, Neurofibromatosis 2 ; Genomic Instability ; Genomics ; Humans ; Kruppel-Like Transcription Factors/*genetics ; Male ; Meningeal Neoplasms/classification/*genetics/pathology ; Meningioma/classification/*genetics/pathology ; Middle Aged ; Mutation ; Neoplasm Grading ; Proto-Oncogene Proteins c-akt/*genetics ; Receptors, G-Protein-Coupled/*genetics ; Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-02-01
    Description: Hereditary spastic paraplegias (HSPs) are neurodegenerative motor neuron diseases characterized by progressive age-dependent loss of corticospinal motor tract function. Although the genetic basis is partly understood, only a fraction of cases can receive a genetic diagnosis, and a global view of HSP is lacking. By using whole-exome sequencing in combination with network analysis, we identified 18 previously unknown putative HSP genes and validated nearly all of these genes functionally or genetically. The pathways highlighted by these mutations link HSP to cellular transport, nucleotide metabolism, and synapse and axon development. Network analysis revealed a host of further candidate genes, of which three were mutated in our cohort. Our analysis links HSP to other neurodegenerative disorders and can facilitate gene discovery and mechanistic understanding of disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4157572/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4157572/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Novarino, Gaia -- Fenstermaker, Ali G -- Zaki, Maha S -- Hofree, Matan -- Silhavy, Jennifer L -- Heiberg, Andrew D -- Abdellateef, Mostafa -- Rosti, Basak -- Scott, Eric -- Mansour, Lobna -- Masri, Amira -- Kayserili, Hulya -- Al-Aama, Jumana Y -- Abdel-Salam, Ghada M H -- Karminejad, Ariana -- Kara, Majdi -- Kara, Bulent -- Bozorgmehri, Bita -- Ben-Omran, Tawfeg -- Mojahedi, Faezeh -- Mahmoud, Iman Gamal El Din -- Bouslam, Naima -- Bouhouche, Ahmed -- Benomar, Ali -- Hanein, Sylvain -- Raymond, Laure -- Forlani, Sylvie -- Mascaro, Massimo -- Selim, Laila -- Shehata, Nabil -- Al-Allawi, Nasir -- Bindu, P S -- Azam, Matloob -- Gunel, Murat -- Caglayan, Ahmet -- Bilguvar, Kaya -- Tolun, Aslihan -- Issa, Mahmoud Y -- Schroth, Jana -- Spencer, Emily G -- Rosti, Rasim O -- Akizu, Naiara -- Vaux, Keith K -- Johansen, Anide -- Koh, Alice A -- Megahed, Hisham -- Durr, Alexandra -- Brice, Alexis -- Stevanin, Giovanni -- Gabriel, Stacy B -- Ideker, Trey -- Gleeson, Joseph G -- HHSN268200782096C/PHS HHS/ -- HHSN268201100011/PHS HHS/ -- N01-CO-12400/CO/NCI NIH HHS/ -- P01 HD070494/HD/NICHD NIH HHS/ -- P01HD070494/HD/NICHD NIH HHS/ -- P30NS047101/NS/NINDS NIH HHS/ -- R01NS041537/NS/NINDS NIH HHS/ -- R01NS048453/NS/NINDS NIH HHS/ -- R01NS052455/NS/NINDS NIH HHS/ -- U54 HG006504/HG/NHGRI NIH HHS/ -- U54HG003067/HG/NHGRI NIH HHS/ -- U54HG006504/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Jan 31;343(6170):506-11. doi: 10.1126/science.1247363.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24482476" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/physiology ; Biological Transport/genetics ; Cohort Studies ; Exome/*genetics ; Gene Regulatory Networks ; *Genetic Association Studies ; Humans ; Motor Neuron Disease/*genetics ; Mutation ; Neurons/*metabolism ; Nucleotides/genetics/metabolism ; Pyramidal Tracts/*metabolism ; Sequence Analysis, DNA ; Spastic Paraplegia, Hereditary/*genetics ; Synapses/physiology ; Transcriptome ; Zebrafish
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-04-13
    Description: Multiple studies have confirmed the contribution of rare de novo copy number variations to the risk for autism spectrum disorders. But whereas de novo single nucleotide variants have been identified in affected individuals, their contribution to risk has yet to be clarified. Specifically, the frequency and distribution of these mutations have not been well characterized in matched unaffected controls, and such data are vital to the interpretation of de novo coding mutations observed in probands. Here we show, using whole-exome sequencing of 928 individuals, including 200 phenotypically discordant sibling pairs, that highly disruptive (nonsense and splice-site) de novo mutations in brain-expressed genes are associated with autism spectrum disorders and carry large effects. On the basis of mutation rates in unaffected individuals, we demonstrate that multiple independent de novo single nucleotide variants in the same gene among unrelated probands reliably identifies risk alleles, providing a clear path forward for gene discovery. Among a total of 279 identified de novo coding mutations, there is a single instance in probands, and none in siblings, in which two independent nonsense variants disrupt the same gene, SCN2A (sodium channel, voltage-gated, type II, alpha subunit), a result that is highly unlikely by chance.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3667984/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3667984/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanders, Stephan J -- Murtha, Michael T -- Gupta, Abha R -- Murdoch, John D -- Raubeson, Melanie J -- Willsey, A Jeremy -- Ercan-Sencicek, A Gulhan -- DiLullo, Nicholas M -- Parikshak, Neelroop N -- Stein, Jason L -- Walker, Michael F -- Ober, Gordon T -- Teran, Nicole A -- Song, Youeun -- El-Fishawy, Paul -- Murtha, Ryan C -- Choi, Murim -- Overton, John D -- Bjornson, Robert D -- Carriero, Nicholas J -- Meyer, Kyle A -- Bilguvar, Kaya -- Mane, Shrikant M -- Sestan, Nenad -- Lifton, Richard P -- Gunel, Murat -- Roeder, Kathryn -- Geschwind, Daniel H -- Devlin, Bernie -- State, Matthew W -- K08 MH087639/MH/NIMH NIH HHS/ -- R25 MH077823/MH/NIMH NIH HHS/ -- T32 GM008042/GM/NIGMS NIH HHS/ -- U01 MH081896/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Apr 4;485(7397):237-41. doi: 10.1038/nature10945.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program on Neurogenetics, Child Study Center, Department of Psychiatry, Yale University School of Medicine, 230 South Frontage Road, New Haven, Connecticut 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22495306" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Autistic Disorder/*genetics ; Codon, Nonsense/genetics ; Exome/*genetics ; Exons/*genetics ; Genetic Heterogeneity ; Genetic Predisposition to Disease/*genetics ; Humans ; Mutation/*genetics ; NAV1.2 Voltage-Gated Sodium Channel ; Nerve Tissue Proteins/*genetics ; RNA Splice Sites/genetics ; Siblings ; Sodium Channels/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...