Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-01-14
    Description: The observed number counts of high-redshift galaxy candidates have been used to build up a statistical description of star-forming activity at redshift z greater, similar 7, when galaxies reionized the Universe. Standard models predict that a high incidence of gravitational lensing will probably distort measurements of flux and number of these earliest galaxies. The raw probability of this happening has been estimated to be approximately 0.5 per cent (refs 11, 12), but can be larger owing to observational biases. Here we report that gravitational lensing is likely to dominate the observed properties of galaxies with redshifts of z greater, similar 12, when the instrumental limiting magnitude is expected to be brighter than the characteristic magnitude of the galaxy sample. The number counts could be modified by an order of magnitude, with most galaxies being part of multiply imaged systems, located less than 1 arcsec from brighter foreground galaxies at z approximately 2. This lens-induced association of high-redshift and foreground galaxies has perhaps already been observed among a sample of galaxy candidates identified at z approximately 10.6. Future surveys will need to be designed to account for a significant gravitational lensing bias in high-redshift galaxy samples.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wyithe, J Stuart B -- Yan, Haojing -- Windhorst, Rogier A -- Mao, Shude -- England -- Nature. 2011 Jan 13;469(7329):181-4. doi: 10.1038/nature09619.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia. swyithe@unimelb.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21228870" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-06
    Description: Oligodendrogliomas are the second most common malignant brain tumor in adults and exhibit characteristic losses of chromosomes 1p and 19q. To identify the molecular genetic basis for this alteration, we performed exomic sequencing of seven tumors. Among other changes, we found that the CIC gene (homolog of the Drosophila gene capicua) on chromosome 19q was somatically mutated in six cases and that the FUBP1 gene [encoding far-upstream element (FUSE) binding protein] on chromosome 1p was somatically mutated in two tumors. Examination of 27 additional oligodendrogliomas revealed 12 and 3 more tumors with mutations of CIC and FUBP1, respectively, 58% of which were predicted to result in truncations of the encoded proteins. These results suggest a critical role for these genes in the biology and pathology of oligodendrocytes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3170506/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3170506/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bettegowda, Chetan -- Agrawal, Nishant -- Jiao, Yuchen -- Sausen, Mark -- Wood, Laura D -- Hruban, Ralph H -- Rodriguez, Fausto J -- Cahill, Daniel P -- McLendon, Roger -- Riggins, Gregory -- Velculescu, Victor E -- Oba-Shinjo, Sueli Mieko -- Marie, Suely Kazue Nagahashi -- Vogelstein, Bert -- Bigner, Darell -- Yan, Hai -- Papadopoulos, Nickolas -- Kinzler, Kenneth W -- CA11898/CA/NCI NIH HHS/ -- CA121113/CA/NCI NIH HHS/ -- CA43460/CA/NCI NIH HHS/ -- CA57345/CA/NCI NIH HHS/ -- CA62924/CA/NCI NIH HHS/ -- N01 CN043302/CN/NCI NIH HHS/ -- N01-CN-43302/CN/NCI NIH HHS/ -- NS20023/NS/NINDS NIH HHS/ -- P50 CA062924/CA/NCI NIH HHS/ -- P50 CA062924-06/CA/NCI NIH HHS/ -- P50 NS020023/NS/NINDS NIH HHS/ -- P50 NS020023-16/NS/NINDS NIH HHS/ -- R01 CA057345/CA/NCI NIH HHS/ -- R01 CA057345-08/CA/NCI NIH HHS/ -- R01 CA121113/CA/NCI NIH HHS/ -- R01 CA121113-01/CA/NCI NIH HHS/ -- R01 CA140316/CA/NCI NIH HHS/ -- R37 CA043460/CA/NCI NIH HHS/ -- R37 CA043460-16/CA/NCI NIH HHS/ -- R37 CA057345/CA/NCI NIH HHS/ -- RC2 DE020957/DE/NIDCR NIH HHS/ -- RC2 DE020957-01/DE/NIDCR NIH HHS/ -- RC2DE020957/DE/NIDCR NIH HHS/ -- T32 CA009574/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Sep 9;333(6048):1453-5. doi: 10.1126/science.1210557. Epub 2011 Aug 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21287, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21817013" target="_blank"〉PubMed〈/a〉
    Keywords: Brain Neoplasms/*genetics ; Chromosomes, Human, Pair 1/genetics ; Chromosomes, Human, Pair 19/genetics ; DNA Helicases/chemistry/*genetics/metabolism ; DNA-Binding Proteins/chemistry/*genetics/metabolism ; Exons ; Female ; Genes, Tumor Suppressor ; Genetic Predisposition to Disease ; Humans ; Loss of Heterozygosity ; Male ; *Mutation ; Mutation, Missense ; Oligodendroglioma/*genetics ; Receptor, Notch2/genetics ; Repressor Proteins/chemistry/*genetics/metabolism ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-05-16
    Description: The central nervous system (CNS) requires a tightly controlled environment free of toxins and pathogens to provide the proper chemical composition for neural function. This environment is maintained by the 'blood-brain barrier' (BBB), which is composed of blood vessels whose endothelial cells display specialized tight junctions and extremely low rates of transcellular vesicular transport (transcytosis). In concert with pericytes and astrocytes, this unique brain endothelial physiological barrier seals the CNS and controls substance influx and efflux. Although BBB breakdown has recently been associated with initiation and perpetuation of various neurological disorders, an intact BBB is a major obstacle for drug delivery to the CNS. A limited understanding of the molecular mechanisms that control BBB formation has hindered our ability to manipulate the BBB in disease and therapy. Here we identify mechanisms governing the establishment of a functional BBB. First, using a novel tracer-injection method for embryos, we demonstrate spatiotemporal developmental profiles of BBB functionality and find that the mouse BBB becomes functional at embryonic day 15.5 (E15.5). We then screen for BBB-specific genes expressed during BBB formation, and find that major facilitator super family domain containing 2a (Mfsd2a) is selectively expressed in BBB-containing blood vessels in the CNS. Genetic ablation of Mfsd2a results in a leaky BBB from embryonic stages through to adulthood, but the normal patterning of vascular networks is maintained. Electron microscopy examination reveals a dramatic increase in CNS-endothelial-cell vesicular transcytosis in Mfsd2a(-/-) mice, without obvious tight-junction defects. Finally we show that Mfsd2a endothelial expression is regulated by pericytes to facilitate BBB integrity. These findings identify Mfsd2a as a key regulator of BBB function that may act by suppressing transcytosis in CNS endothelial cells. Furthermore, our findings may aid in efforts to develop therapeutic approaches for CNS drug delivery.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4134871/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4134871/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ben-Zvi, Ayal -- Lacoste, Baptiste -- Kur, Esther -- Andreone, Benjamin J -- Mayshar, Yoav -- Yan, Han -- Gu, Chenghua -- 5T32MH20017-15/MH/NIMH NIH HHS/ -- P30 NS072030/NS/NINDS NIH HHS/ -- R01 NS064583/NS/NINDS NIH HHS/ -- R01NS064583/NS/NINDS NIH HHS/ -- T32 MH020017/MH/NIMH NIH HHS/ -- England -- Nature. 2014 May 22;509(7501):507-11. doi: 10.1038/nature13324. Epub 2014 May 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, Massachusetts 02115, USA. ; Department of Genetics, Harvard Medical School, 220 Longwood Avenue, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24828040" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Vessels/metabolism ; Blood-Brain Barrier/*embryology/*physiology ; Cerebral Cortex/blood supply/embryology/metabolism ; Drug Delivery Systems ; Endothelial Cells/metabolism ; Female ; Gene Expression Profiling ; Male ; Membrane Transport Proteins/deficiency/genetics/*metabolism ; Mice ; Neovascularization, Physiologic ; Pericytes/metabolism ; Spatio-Temporal Analysis ; Tight Junctions/metabolism/pathology ; Transcytosis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-08-24
    Description: HOX gene dysregulation is a common feature of acute myeloid leukemia (AML). The molecular mechanisms underlying aberrant HOX gene expression and associated AML pathogenesis remain unclear. The nuclear protein CCCTC-binding factor (CTCF), when bound to insulator sequences, constrains temporal HOX gene-expression patterns within confined chromatin domains for normal development. Here, we used targeted pooled CRISPR-Cas9–knockout library screening to interrogate the function of CTCF boundaries in the HOX gene loci. We discovered that the CTCF binding site located between HOXA7 and HOXA9 genes (CBS7/9) is critical for establishing and maintaining aberrant HOXA9-HOXA13 gene expression in AML. Disruption of the CBS7/9 boundary resulted in spreading of repressive H3K27me3 into the posterior active HOXA chromatin domain that subsequently impaired enhancer/promoter chromatin accessibility and disrupted ectopic long-range interactions among the posterior HOXA genes. Consistent with the role of the CBS7/9 boundary in HOXA locus chromatin organization, attenuation of the CBS7/9 boundary function reduced posterior HOXA gene expression and altered myeloid-specific transcriptome profiles important for pathogenesis of myeloid malignancies. Furthermore, heterozygous deletion of the CBS7/9 chromatin boundary in the HOXA locus reduced human leukemic blast burden and enhanced survival of transplanted AML cell xenograft and patient-derived xenograft mouse models. Thus, the CTCF boundary constrains the normal gene-expression program, as well as plays a role in maintaining the oncogenic transcription program for leukemic transformation. The CTCF boundaries may serve as novel therapeutic targets for the treatment of myeloid malignancies.
    Keywords: Hematopoiesis and Stem Cells, Myeloid Neoplasia
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-08-24
    Description: Cholesterol is essential for numerous biologic functions and processes, but an excess of intracellular cholesterol can be toxic. Intestinal cholesterol absorption is a major determinant of plasma cholesterol level. The liver X receptor (LXR) is a nuclear receptor known for its activity in cholesterol efflux and reverse cholesterol transport. In this study, we uncovered a surprising function of LXR in intestinal cholesterol absorption and toxicity. Genetic or pharmacologic activation of LXR α -sensitized mice to a high-cholesterol diet (HCD) induced intestinal toxicity and tissue damage, including the disruption of enterocyte tight junctions, whereas the same HCD caused little toxicity in the absence of LXR activation. The gut toxicity in HCD-fed LXR-KI mice may have been accounted for by the increased intestinal cholesterol absorption and elevation of enterocyte and systemic levels of free cholesterol. The increased intestinal cholesterol absorption preceded the gut toxicity, suggesting that the increased absorption was not secondary to tissue damage. The heightened sensitivity to HCD in the HCD-fed LXR α -activated mice appeared to be intestine-specific because the liver was not affected despite activation of the same receptor in this tissue. Moreover, heightened sensitivity to HCD cannot be reversed by ezetimibe, a Niemann-Pick C1-like 1 inhibitor that inhibits intestinal cholesterol absorption, suggesting that the increased cholesterol absorption in LXR-activated intestine is mediated by a mechanism that has yet to be defined.
    Print ISSN: 0026-895X
    Electronic ISSN: 1521-0111
    Topics: Chemistry and Pharmacology , Medicine
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-02-22
    Description: The identification of succinate dehydrogenase (SDH), fumarate hydratase (FH) and isocitrate dehydrogenase (IDH) mutations in human cancers has rekindled the idea that altered cellular metabolism can transform cells. Inactivating SDH and FH mutations cause the accumulation of succinate and fumarate, respectively, which can inhibit 2-oxoglutarate (2-OG)-dependent enzymes, including the EGLN prolyl 4-hydroxylases that mark the hypoxia inducible factor (HIF) transcription factor for polyubiquitylation and proteasomal degradation. Inappropriate HIF activation is suspected of contributing to the pathogenesis of SDH-defective and FH-defective tumours but can suppress tumour growth in some other contexts. IDH1 and IDH2, which catalyse the interconversion of isocitrate and 2-OG, are frequently mutated in human brain tumours and leukaemias. The resulting mutants have the neomorphic ability to convert 2-OG to the (R)-enantiomer of 2-hydroxyglutarate ((R)-2HG). Here we show that (R)-2HG, but not (S)-2HG, stimulates EGLN activity, leading to diminished HIF levels, which enhances the proliferation and soft agar growth of human astrocytes. These findings define an enantiomer-specific mechanism by which the (R)-2HG that accumulates in IDH mutant brain tumours promotes transformation and provide a justification for exploring EGLN inhibition as a potential treatment strategy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656605/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656605/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koivunen, Peppi -- Lee, Sungwoo -- Duncan, Christopher G -- Lopez, Giselle -- Lu, Gang -- Ramkissoon, Shakti -- Losman, Julie A -- Joensuu, Paivi -- Bergmann, Ulrich -- Gross, Stefan -- Travins, Jeremy -- Weiss, Samuel -- Looper, Ryan -- Ligon, Keith L -- Verhaak, Roel G W -- Yan, Hai -- Kaelin, William G Jr -- R01 CA068490/CA/NCI NIH HHS/ -- R01 CA140316/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Feb 15;483(7390):484-8. doi: 10.1038/nature10898.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biocenter Oulu, Department of Medical Biochemistry and Molecular Biology, Oulu Center for Cell-Matrix Research, University of Oulu, FIN-90014 Oulu, Finland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22343896" target="_blank"〉PubMed〈/a〉
    Keywords: Astrocytes/cytology/drug effects/metabolism ; Cell Line ; Cell Line, Tumor ; Cell Proliferation/drug effects ; Cell Transformation, Neoplastic/*drug effects/genetics/*metabolism ; Dioxygenases/genetics/*metabolism ; Enzyme Activation/drug effects ; Glioma/enzymology/genetics/metabolism/pathology ; Glutarates/*chemistry/metabolism/*pharmacology ; Humans ; Hypoxia-Inducible Factor 1/metabolism ; Hypoxia-Inducible Factor-Proline Dioxygenases ; Isocitrate Dehydrogenase/genetics/metabolism ; Nuclear Proteins/genetics/*metabolism ; Oncogenes ; Procollagen-Proline Dioxygenase/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-02-11
    Description: A nanoprocessor constructed from intrinsically nanometre-scale building blocks is an essential component for controlling memory, nanosensors and other functions proposed for nanosystems assembled from the bottom up. Important steps towards this goal over the past fifteen years include the realization of simple logic gates with individually assembled semiconductor nanowires and carbon nanotubes, but with only 16 devices or fewer and a single function for each circuit. Recently, logic circuits also have been demonstrated that use two or three elements of a one-dimensional memristor array, although such passive devices without gain are difficult to cascade. These circuits fall short of the requirements for a scalable, multifunctional nanoprocessor owing to challenges in materials, assembly and architecture on the nanoscale. Here we describe the design, fabrication and use of programmable and scalable logic tiles for nanoprocessors that surmount these hurdles. The tiles were built from programmable, non-volatile nanowire transistor arrays. Ge/Si core/shell nanowires coupled to designed dielectric shells yielded single-nanowire, non-volatile field-effect transistors (FETs) with uniform, programmable threshold voltages and the capability to drive cascaded elements. We developed an architecture to integrate the programmable nanowire FETs and define a logic tile consisting of two interconnected arrays with 496 functional configurable FET nodes in an area of approximately 960 mum(2). The logic tile was programmed and operated first as a full adder with a maximal voltage gain of ten and input-output voltage matching. Then we showed that the same logic tile can be reprogrammed and used to demonstrate full-subtractor, multiplexer, demultiplexer and clocked D-latch functions. These results represent a significant advance in the complexity and functionality of nanoelectronic circuits built from the bottom up with a tiled architecture that could be cascaded to realize fully integrated nanoprocessors with computing, memory and addressing capabilities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yan, Hao -- Choe, Hwan Sung -- Nam, SungWoo -- Hu, Yongjie -- Das, Shamik -- Klemic, James F -- Ellenbogen, James C -- Lieber, Charles M -- England -- Nature. 2011 Feb 10;470(7333):240-4. doi: 10.1038/nature09749.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21307937" target="_blank"〉PubMed〈/a〉
    Keywords: Computing Methodologies ; Electronics/*instrumentation/*methods ; Germanium ; Logic ; Nanotechnology/*instrumentation/*methods ; Nanowires/*chemistry ; Silicon ; *Transistors, Electronic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-03-14
    Description: Fe 2 O 3 -ZSM-5 catalysts (0.6 wt% Fe load) prepared by metal-organic chemical vapour deposition (MOCVD) method were evaluated in the catalytic wet peroxide oxidation (CWPO) of m -cresol in a batch reactor. The catalysts have a good iron dispersion and small iron crystalline size, and exhibit high stability during reaction. In addition, the kinetics of the reaction were studied and the initial oxidation rate equation was given. Catalysts were first characterized by N 2 adsorption–desorption isotherms, scanning electronic microscopy, energy-dispersive spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Results show that extra-framework Fe 3+ species (presenting in the form of Fe 2 O 3 ) are successfully loaded on ZSM-5 supports by MOCVD method. Performances of catalysts were tested and effects of different temperature, stirring rate, catalyst amount on hydrogen peroxide, m -cresol, total organic carbon (TOC) conversion and Fe leaching concentration were studied. Results reveal that catalytic activity increased with higher temperature, faster stirring rate and larger catalyst amount. In all circumstances, m -cresol conversion could reach 99% in 0.5–2.5 h, and the highest TOC removal (80.5%) is obtained after 3 h under conditions of 60°C, 400 r.p.m. and catalyst amount of 2.5 g l –1 . The iron-leaching concentrations are less than 1.1 mg l –1 under all conditions. The initial oxidation rate equation –rA0=7.2 x 1011e–81300/RTCA is obtained for m -cresol degradation with Fe 2 O 3 -ZSM-5 catalysts.
    Keywords: chemical engineering, environmental science
    Electronic ISSN: 2054-5703
    Topics: Natural Sciences in General
    Published by Royal Society
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-04-05
    Description: Cu-ZSM-5 catalysts were prepared by chemical vapour deposition for catalytic wet peroxide oxidation (CWPO) of phenol in a fixed bed reactor. Firstly, Cu-ZSM-5 catalysts with Cu loading of 0.5, 2, and 6 wt% were prepared and characterized by X-ray diffraction (XRD), N 2 adsorption–desorption and X-ray photoelectron spectra (XPS). The characterization results demonstrated that CuO was uniformly dispersed on ZSM-5 with slight effect on the structure properties of the support. Then, several variables, such as the copper loading, reaction temperature, catalyst bed height and feed flow rate were investigated in the CWPO of phenol in aqueous solution at high concentration (1000 ppm). Compared with the catalyst prepared by the impregnation method, the Cu-ZSM-5 prepared by chemical vapour deposition has a better capacity of further oxidizing the intermediate organic products into carbon dioxide and water with less metal loading. Based on the Cu-ZSM-5 catalyst with Cu loading of 6 wt%, complete removal of phenol and a high TOC reduction (around 70%) have been achieved at the temperature of 80°C feed flow rate of 2 ml min –1 and catalyst bed height of 3 cm. Moreover, this catalyst maintained high catalytic activity after three runs with high phenol conversion (94%) under this optimum operating condition. Finally, the reaction mechanism was studied based on the intermediates detected by high-performance liquid chromatography (HPLC).
    Keywords: chemical engineering, environmental chemistry
    Electronic ISSN: 2054-5703
    Topics: Natural Sciences in General
    Published by Royal Society
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-03-06
    Description: Human rhinoviruses (HRVs) are the commonest cause of the common cold. While HRV is less pathogenic than other respiratory viruses, it is frequently associated with exacerbation of chronic respiratory diseases such as rhinosinusitis and asthma. Nasal epithelial cells are the first sites of viral contact, immune initiation, and airway interconnectivity, but there are limited studies on HRV infection of nasal epithelial cells. Hence, we established a model of HRV infection of in vitro–differentiated human nasal epithelial cells (hNECs) derived from multiple individuals. Through HRV infection of hNECs, we found that HRV mainly targeted ciliated cells and preferentially induced type I and III interferon antiviral pathways. Quantitative polymerase chain reaction analysis of inflammatory genes suggested predominant type 1 immunity signaling and recruitment, with secreted CXCL9, IP-10, CXCL11, and RANTES as likely initiators of airway inflammatory responses. Additionally, we further explored HRV bidirectional release from the hNECs and identified 11 associated genes. Other HRV interactions were also identified through a systematic comparison with influenza A virus infection of hNECs. Overall, this in vitro hNEC HRV infection model provides a platform for repeatable and controlled studies of different individuals, thus providing novel insights into the roles of human nasal epithelium in HRV interaction and immune initiation.
    Print ISSN: 0022-1899
    Electronic ISSN: 1537-6613
    Topics: Medicine
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...