Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1912
    Keywords: 5-HT1A ; Dopamine ; Electrophysiology ; Ventral tegmental area ; Substantia nigra
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The effects of the selective 5-HT1A receptor agonist (R)-8-hydroxy-2(di-n-propylamino)tetralin [(R)-8-OH-DPAT] and the novel 5-HT1A antagonist (S)-5-fluoro-8-hydroxy-2-(dipropylamino)-tetralin [(S)-UH-301] were studied with regard to the firing pattern of single mesencephalic dopamine (DA) neurons with extracellular recording techniques in chloral hydrate anesthetized male rats. Neuronal activity was studied with respect to firing rate, burst firing and regularity of firing. In the ventral tegmental area (VTA) low doses of (R)-8-OH-DPAT (2–32 μg/kg i.v.) caused an increase in all three parameters. The effect on firing rate of DA neurons was more pronounced in the parabrachial pigmentosus nucleus than in the paranigral nucleus, the two major subdivisions of VTA. In the substantia nigra zona compacta (SN-ZC), (R)-8-OH-DPAT (2–256 μg/kg i.v.) had no effect on firing rate and regularity of firing and only slightly increased burst firing. High doses of (R)-8-OH-DPAT (512–1024 μg/kg i.v.) decreased the activity of DA cells in both areas, an effect that was prevented by pretreatment with the selective DA D2 receptor antagonist raclopride. (S)-UH-301 (100–800 μg/kg i.v.) decreased both firing rate and burst firing without affecting regularity of DA neurons in the VTA. In the SN-ZC, (S)-UH-301 decreased the firing rate but failed to affect burst firing and regularity of firing. These effects of (S)-UH-301 were blocked by raclopride pretreatment. Local application by pneumatic ejection of 8-OH-DPAT excited the DA cells in both the VTA and the SN-ZC, whereas (S)-UH-301 inhibited these cells when given locally. These results show that 5-HT1A receptor related compounds differentially affect the electrophysiological activity of central DA neurons. The DA receptor agonistic properties of these compound appear to contribute to the inhibitory effects of high doses of (R)-8-OH-DPAT and (S)-UH-301 on DA neuronal activity. Given the potential use of 5-HT1A receptor selective compounds in the treatment of anxiety and depression their effects on central DA systems involved in mood regulation and reward related processes are of considerable importance.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1912
    Keywords: Key words Antidepressant ; Citalopram ; Frontalcortex ; Microdialysis ; Serotonin ; 5-HT1Areceptor antagonist ; (S)-UH-301
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  In a recent study, utilizing single cell recording techniques, we have shown that administration of 5-HT1A receptor antagonists, e.g. (S)-UH-301, to rats concomitantly treated, acute or chronically, with the selective serotonin reuptake inhibitor (SSRI) citalopram significantly increases the activity of 5-hydroxytryptamine (5-HT) containing neurons in the dorsal raphe nucleus (DRN). Here we report correlative experiments using microdialysis in freely moving animals to measure extracellular levels of 5-HT and its metabolite 5-hydroxyindole acetic acid (5-HIAA) in the frontal cortex, a major projection area for DRN-5-HT neurons. Acute administration of (S)-UH-301 (2.5 mg/ kg s.c.) or citalopram (2.0 mg/kg s.c.) increased 5-HT concentrations with a maximum of about 70% and 185%, respectively, above baseline. However, when (S)-UH-301 was administered 30 min before citalopram the maximal increase in 5-HT levels was approximately 400%. In rats chronically treated with citalopram (20 mg/kg/day i.p. for 14 days) basal 5-HT concentrations in the frontal cortex were significantly increased and 5-HIAA concentrations were decreased when measured 10–12 h, but not 18–20 h, after the last injection of citalopram, as compared to basal 5-HT and 5-HIAA concentrations in chronic saline-treated rats. When (S)-UH-301 (2.5 mg/kg s.c.) was administered 12 h, but not 20 h, after the last dose of citalopram it produced a significantly larger increase in extracellular concentrations of 5-HT than in control rats. However, in rats pretreated with a single, very high dose of citalopram, 20 mg/kg i.p., administration of (S)-UH-301 at 12 h after citalopram did not increase 5-HT levels. The augmentation by (S)-UH-301 of the increase in brain 5-HT output produced by acute administration of citalopram is probably due to antagonism of the citalopram induced feedback inhibition of 5-HT cells in the DRN, as previously suggested. However, the capacity of (S)-UH-301 to further increase the already elevated extracellular concentrations of 5-HT in brain in animals maintained on a chronic citalopram regimen, in which significant tolerance to the initial feedback inhibition of DRN-5-HT cells had developed, represents a novel finding. Generally, the reduced feedback inhibition of 5-HT neurons obtained with chronic citalopram treatment, and the associated elevation of brain 5-HT concentrations, may be related to functional desensitization of somatodendritic 5-HT1A autoreceptors in the DRN. This phenomenon may also largely explain the larger increase in 5-HT output produced by (S)-UH-301 in chronic citalopram treated animals as compared to its effect in control animals. Yet, a contributory factor may be a slight, remaining feedback inhibition of the 5-HT cells caused by residual citalopram at 12, but not 20 h after its last administration.  Previous clinical studies suggest that addition of a 5-HT1A receptor antagonist to an SSRI in the treatment of depression may accelerate the onset of clinical effects. Moreover, in therapy-resistant cases maintained on SSRI treatment, addition of a 5-HT1A receptor antagonist may improve clinical efficacy. Since the therapeutic effect of SSRIs in depression has been found to be critically linked to the availability of 5-HT in brain, our experimental results support, in principle, both of the above clinically based notions.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1912
    Keywords: Antidepressant ; Citalopram ; Frontal cortex ; Microdialysis ; Serotonin ; 5-HT1A receptor antagonist ; (S)-UH-301
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In a recent study, utilizing single cell recording techniques, we have shown that administration of 5-HT1A receptor antagonists, e.g. (S)-UH-301, to rats concomitantly treated, acute or chronically, with the selective serotonin reuptake inhibitor (SSRI) citalopram significantly increases the activity of 5-hydroxytryptamine (5-HT) containing neurons in the dorsal raphe nucleus (DRN). Here we report correlative experiments using microdialysis in freely moving animals to measure extracellular levels of 5-HT and its metabolite 5-hydroxyindole acetic acid (5-HIAA) in the frontal cortex, a major projection area for DRN-5-HT neurons. Acute administration of (S)-UH-301 (2.5 mg/kg s.c.) or citalopram (2.0 mg/kg s.c.) increased 5-HT concentrations with a maximum of about 70% and 185%, respectively, above baseline. However, when (S)UH-301 was administered 30 min before citalopram the maximal increase in 5-HT levels was approximately 400%. In rats chronically treated with citalopram (20 mg/kg/day i.p. for 14 days) basal 5-HT concentrations in the frontal cortex were significantly increased and 5-HIAA concentrations were decreased when measured 10–12 h, but not 18–20 h, after the last injection of citalopram, as compared to basal 5-HT and 5-HIAA concentrations in chronic saline-treated rats. When (S)-UH-301 (2.5 mg/kg s.c.) was administered 12 h, but not 20 h, after the last dose of citalopram it produced a significantly larger increase in extracellular concentrations of 5-HT than in control rats. However, in rats pretreated with a single, very high dose of citalopram, 20 mg/kg i.p., administration of (S)-UH-301 at 12 h after citalopram did not increase 5-HT levels. The augmentation by (S)-UH-301 of the increase in brain 5-HT output produced by acute administration of citalopram is probably due to antagonism of the citalopram induced feedback inhibition of 5-HT cells in the DRN, as previously suggested. However, the capacity of (S)-UH-301 to further increase the already elevated extracellular concentrations of 5-HT in brain in animals maintained on a chronic citalopram regimen, in which significant tolerance to the initial feedback inhibition of DRN-5-HT cells had developed, represents a novel finding. Generally, the reduced feedback inhibition of 5-HT neurons obtained with chronic citalopram treatment, and the associated elevation of brain 5-HT concentrations, may be related to functional desensitization of somatodendritic 5-HT1A autoreceptors in the DRN. This phenomenon may also largely explain the larger increase in 5-HT output produced by (S)-UH-301 in chronic citalopram treated animals as compared to its effect in control animals. Yet, a contributory factor may be a slight, remaining feedback inhibition of the 5-HT cells caused by residual citalopram at 12, but not 20 h after its last administration. Previous clinical studies suggest that addition of a 5-HT1A receptor antagonist to an SSRI in the treatment of depression may accelerate the onset of clinical effects. Moreover, in therapy-resistant cases maintained on SSRI treatment, addition of a 5-HT1A receptor antagonist may improve clinical efficacy. Since the therapeutic effect of SSRIs in depression has been found to be critically linked to the availability of 5-HT in brain, our experimental results support, in principle, both of the above clinically based notions.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1912
    Keywords: Key words 5-HT1A receptor antagonist ; Citalopram ; Antidepressant ; Electrophysiology ; Dorsal raphe nucleus ; (S)-UH-301 ; (+)-WAY100135
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  In this study we have examined the acute effects of systemic administration of the selective serotonin reuptake inhibitor (SSRI), citalopram, in combination with either of the two selective 5-HT1A receptor antagonists, (S)-5-fluoro-8-hydroxy-2-(di-propylamino)-tetralin [(S)-UH-301] or (+)-N-tert-butyl 3-(4-(2-methoxyphenyl)piperazin-1-yl)-2-phenylpropionamide dihydrochloride [(+)-WAY100135], on the activity of single 5-HT neurons in the dorsal raphe nucleus (DRN) of anesthetized rats using extracellular recording techniques. Acute administration of citalopram (0.3 mg/kg i.v.) significantly decreased the firing rate of DRN-5-HT cells most likely as a result of indirect stimulation of inhibitory somatodendritic 5-HT1A autoreceptors located on 5-HT cells in the DRN. This effect of citalopram was completely reversed by (S)-UH-301 (0.5 mg/kg i.v.) and partly by (+)-WAY100135 (0.5 mg/kg i.v.). Furthermore, the inhibitory effect of citalopram on the activity of 5-HT neurons was significantly attenuated by pretreatment with (S)-UH-301 (0.25 mg/kg i.v.) or (+)-WAY100135 (0.25 mg/kg i.v.). We have also studied the effects of (S)-UH-301 (0.03–0.50 mg/kg i.v.) on the firing rate of single DRN-5-HT cells in rats chronically treated with citalopram (20 mg/kg/day i.p.×14 days). Administration of (S)-UH-301 significantly and dose-dependently increased the activity of 5-HT cells in citalopram-treated rats, but did not affect these neurons in saline-treated (1 ml/kg/day i.p.×14 days), control rats. Our results thus suggest that 5-HT1A receptor antagonists can augment both the acute and chronic effects of citalopram on central serotonergic neurotransmission. Since the antidepressant effect of SSRIs is critically linked to the availability of 5-HT, these findings support the notion that 5-HT1A receptor antagonists may not only shorten the latency of onset of SSRIs in the treatment of depression, but also increase their efficacy.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1912
    Keywords: 5-HT1A receptor antagonist ; Citalopram ; Antidepressant ; Electrophysiology ; Dorsal raphe nucleus ; (S)-UH-301 ; (+)-WAY100135
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In this study we have examined the acute effects of systemic administration of the selective serotonin reuptake inhibitor (SSRI), citalopram, in combination with either of the two selective 5-HT1A receptor antagonists, (S)-5-fluoro-8-hydroxy-2-(dipropylamino)-tetralin [(S)-UH-301] or (+)-N-tertbutyl 3-(4-(2-methoxyphenyl)piperazin-1-yl)-2-phenylpropionamide dihydrochloride [(+)-WAY100135], on the activity of single 5-HT neurons in the dorsal raphe nucleus (DRN) of anesthetized rats using extracellular recording techniques. Acute administration of citalopram (0.3 mg/kg i.v.) significantly decreased the firing rate of DRN-5-HT cells most likely as a result of indirect stimulation of inhibitory somatodendritic 5-HT1A autoreceptors located on 5-HT cells in the DRN. This effect of citalopram was completely reversed by (S)-UH-301 (0.5 mg/kg i.v.) and partly by (+)WAY100135 (0.5 mg/kg i.v.). Furthermore, the inhibitory effect of citalopram on the activity of 5-HT neurons was significantly attenuated by pretreatment with (S)-UH-301 (0.25 mg/kg i.v.) or (+)-WAY100135 (0.25 mg/kg i.v.). We have also studied the effects of (S)-UH-301 (0.03–0.50 mg/kg i.v.) on the firing rate of single DRN5-HT cells in rats chronically treated with citalopram (20 mg/kg/day i.p. × 14 days). Administration of (S)UH-301 significantly and dose-dependently increased the activity of 5-HT cells in citalopram-treated rats, but did not affect these neurons in saline-treated (1 m1/kg/day i.p. × 14 days), control rats. Our results thus suggest that 5-HT1A receptor antagonists can augment both the acute and chronic effects of citalopram on central serotonergic neurotransmission. Since the antidepressant effect of SSRIs is critically linked to the availability of 5-HT, these findings support the notion that 5-HT1A receptor antagonists may not only shorten the latency of onset of SSRIs in the treatment of depression, but also increase their efficacy.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Organometallics 2 (1983), S. 772-775 
    ISSN: 1520-6041
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1520-6041
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1520-4804
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1520-4804
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1520-4804
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...