Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Protein kinase C from Saccharomyces cerevisiae (Pkc1p) constitutes a prototypic member of the protein kinase C superfamily, as it shares all the conserved regions scattered among the isoenzymes of higher eukaryotes. The functional significance of some of the conserved domains in the yeast enzyme has not yet been investigated. We examined strains carrying a partial deletion in the amino-terminal region of the enzyme, which is homologous to the HR1 of the protein kinase C-related kinases. This strain was sensitive to the presence of caffeine, Calcofluor white and Congo red, all drugs known to affect mutants defective in the signal transduction pathway ensuring cellular integrity in which Pkc1p is a central component. Isolation of a single point mutation in HR1A, which shares the sensitivity to the drugs mentioned, confirmed the importance of this region for proper regulation of protein kinase C activity in vivo. Two-hybrid analysis provided evidence for an interaction of the small GTPase Rho1p with the HR1A region, in addition to the reported interaction of this protein with the C1 region of Pkc1p. MAP kinase phosphorylation assays indicate that this Rho1p–Pkc1p/HR1A interaction does not result in an activation of the kinase cascade. The intragenic lethality of mutants affected in both HR1A and the C1 domain reported in this work implies an essential role for Rho1p–Pkc1p interaction in yeast.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Signal transduction mediated by the single yeast isozyme of protein kinase C (Pkc1p) is essential for the maintenance of cellular integrity in this model eukaryote. The past few years have seen a dramatic increase in our knowledge of the upstream regulatory factors that modulate Pkc1p activity (e.g. Tor2p, Rom1p, Rom2p, Rho1p, Slg1p, Mid2p) and of the downstream targets of the MAP kinase cascade triggered by it (e.g. Rlm1p, SBF complex). The picture that has emerged connects this pathway to a variety of other cellular processes, such as cell cycle progression (Cdc28p, Swi4p), mating (Ste20p), nutrient sensing (Ira1p), calcium homeostasis (calcineurin, Mid2p, Fks2p) and the structural dynamics of the cytoskeleton (Spa1p, Bni1p).
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Yeast pyruvate decarboxylase (Pdc) catalyses the reaction at the branch-point of fermentation and respiration. In this work we have investigated the mechanisms of its transcriptional regulation in response to glucose and the non-fermentable carbon source ethanol. For this purpose we studied the function of different promoter fragments of PDC1, encoding the major pyruvate decarboxylase enzyme in wild-type cells, in the basal CYC1 promoter context. Thus, we identified a sequence mediating the response to ethanol and provide evidence showing that transcription of PDC1 is controlled by ethanol repression rather than by glucose induction. Furthermore, we showed that the same sequence is responsible for an autoregulatory process, leading to increased transcription from both the PDC1 and the PDC5 promoters, in strains in which the genomic copy of PDC1 is deleted. In addition, we have confirmed the role of Rap1 binding and have demonstrated that the Gcr1 protein also acts in transcriptional activation. DNA-protein interactions at the consensus Rap1 -binding site and the newly identified ethanol-repression sequence (5 -AAATGC-ATA-3, termed 'ERA') were investigated by gel-shift and footprint analyses. Both DNA-binding activities were found in extracts from cells grown in media containing glucose or ethanol as the carbon source, indicating that the capacity to bind is not altered by the carbon source used.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0749-503X
    Keywords: ICL2 ; glyoxylate cycle ; deletion analysis ; transcription ; gluconeogenesis ; Life Sciences ; Life Sciences (general)
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: In this work, we identified an open reading frame 5′ to the yeast HALI gene, that shares a 38% identity in the deduced amino acid sequence with gluconeogenic enzyme isocitrate lyase, encoded by ICL1. We therefore termed the new gene ICL2. The latter is not capable of complementing an icl1 deletion for growth on ethanol neither in its original context, nor when expressed under the control of the glycolytic PFK2 promoter. Nevertheless, fusions of the 5′-non-coding region of ICL2 to the lacZ reporter gene revealed that the gene is transcribed and that the transcriptional regulation is similar to that of other gluconeogenic genes, i.e. high-level expression on ethanol that is drastically reduced on glucose media. Therefore, we attribute the lack of complementation to a lack of function of the encoded protein as an isocitrate lyase. The deduced amino acid sequences of Icl1 and Icl2 differ in a conserved motif used to identify isocitrate lyases, the hexapeptide KKCGHM, where the second lysine residue of Icl1 is replaced by an arginine in Icl2. However, we here demonstrated by in vitro mutagenesis of ICL1 that such an exchange, even though it affects Icl activity to some degree, does not lead to a complete lack of function. Thus, the results presented in this work argue for ICL2 encoding a non-functional isocitrate lyase and provide evidence that lysine 216 of Icl1 is not essential for catalysis. This sequence is deposited as accession number Z48951 entered on4 April 1995 by Barrel et al.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0749-503X
    Keywords: GPM2 ; GPM3 ; phosphoglycerate mutase ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Our previous data indicated that GPM1 encodes the only functional phosphoglycerate mutase in yeast. However, in the course of the yeast genome sequencing project, two homologous sequences, designated GPM2 and GPM3, were detected. They have been further investigated in this work. Key residues in the deduced amino acid sequence, shown to be involved in catalysis for Gpm1 (i.e. His8, Arg59, His181) are conserved in both enzymes. Overexpression of the genes under control of their own promoters in a gpm1 deletion mutant did not complement for any of the phenotypes. This could in part be attributed to a lack of expression due to their weak promoters. Higher level expression under the control of the yeast PFK2 promoter partially complemented the gpm1 defects, without restoring detectable enzymatic activity. Nevertheless, deletion of either GPM2 or GPM3, or the two deletions in concert, did not produce any obvious lesions for growth on a variety of different carbon sources, nor did they change the levels of key intermediary metabolites. We conclude that both genes evolved from duplication events and that they probably constitute non-functional homologues in yeast.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...