Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: RECEPTOR ; ANGIOGENESIS ; APOPTOSIS ; CANCER ; CANCER CELLS ; CELLS ; ENDOTHELIAL-CELLS ; EXPRESSION ; FLK-1/KDR ; GROWTH ; GROWTH-FACTOR ; IN-VITRO ; INHIBITOR ; INVASION ; IONIZING-RADIATION ; IRRADIATION ; proliferation ; PROTECTION ; radiotherapy ; SURVIVAL ; tumor ; TUMOR-CELLS
    Abstract: In recent decades, radiation research has concentrated primarily on the cancer cell compartment. Much less is known about the effect of ionizing radiation on the endothelial cell compartment and the complex interaction between tumor cells and their microenvironment. Here we report that ionizing radiation is a potent antiangiogenic agent that inhibits endothelial cell survival, proliferation, tube formation and invasion. Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor were able to reduce the radiosensitivity of endothelial cells. Yet, it is also found that radiation induces angiogenic factor production by tumor cells that can be abrogated by the addition of antiangiogenic agents. Receptor tyrosine kinase inhibitors of Flk-1/KDR/VEGFR2, FGFR1 and PDGFRbeta, SU5416, and SU6668 enhanced the antiangiogenic effects of direct radiation of the endothelial cells. In a coculture system of PC3 prostate cancer cells and endothelial cells, isolated irradiation of the PC3 cells enhanced endothelial cell invasiveness through a Matrigel matrix, which was inhibited by SU5416 and SU6668. Furthermore, ionizing radiation up-regulated VEGF and basic fibroblast growth factor in PC3 cells and VEGFR2 in endothelial cells. Together these findings suggest a radiation-inducible protective role for tumor cells in the support of their associated vasculature that may be down- regulated by coadministration of angiogenesis inhibitors., These results rationalize concurrent administration of angiogenesis inhibitors and radiotherapy in cancer treatment
    Type of Publication: Journal article published
    PubMed ID: 12839971
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: RECEPTOR ; SPECTRA ; ANGIOGENESIS ; CANCER ; GROWTH ; GROWTH-FACTOR ; IN-VITRO ; INHIBITOR ; proliferation ; SURVIVAL ; tumor ; ADVANCED SOLID TUMORS ; AGENTS ; ANGIOSTATIN ; BLOOD ; carcinoma ; CELL ; CELL LUNG-CANCER ; CELL-PROLIFERATION ; CLINICAL-TRIAL ; COMBINATION ; DOPPLER ; ENDOTHELIAL GROWTH-FACTOR ; evaluation ; FACTOR RECEPTOR ; Germany ; human ; IN-VIVO ; INHIBITION ; KINASE ; LUNG ; MICROSCOPY ; MICROVESSEL DENSITY ; MODEL ; MODELS ; neoplasms ; PATHWAY ; PATHWAYS ; PERFUSION ; PHASE-I ; PROSTATE ; RECOMBINANT HUMAN ENDOSTATIN ; THERAPY ; TOXICITY ; tumor growth ; TYROSINE KINASE ; VITRO ; VIVO
    Abstract: The multifaceted nature of the angiogenic process in malignant neoplasms suggests that protocols that combine antiangiogenic agents may be more effective than single-agent therapies. However it is unclear which combination of agents would be most efficacious and will have the highest degree of synergistic activity while maintaining low overall toxicity. Here we investigate the concept of combining a "direct" angiogenesis inhibitor (endostatin) with an "indirect" antiangiogenic compound [SU5416, a vascular endothelial growth factor receptor 2 (VEGFR2) receptor tyrosine kinase (RTK) inhibitor]. These angiogenic agents were more effective in combination than when used alone in vitro (endothelial cell proliferation, survival, migration/invasion, and tube formation tests) and in vivo. The combination of SU5416 and low-dose endostatin further reduced tumor growth versus monotherapy in human prostate (M), lung (A459), and glioma (U87) xenograft models, and reduced functional microvessel density, tumor microcirculation, and blood perfusion as detected by intravital microscopy and contrast-enhanced Doppler ultrasound. One plausible explanation for the efficacious combination could be that, whereas SU5416 specifically inhibits vascular endothelial growth factor signaling, low-dose endostatin is able to inhibit a broader spectrum of diverse angiogenic pathways directly in the endothelium. The direct antiangiogenic agent might be able to suppress alternative angiogenic pathways up-regulated by the tumor in response to the indirect, specific pathway inhibition. For future clinical evaluation of the concept, a variety of agents with similar mechanistic properties could be tested
    Type of Publication: Journal article published
    PubMed ID: 14695206
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: ANGIOGENESIS ; CANCER ; ENDOTHELIAL-CELLS ; GROWTH ; ADVANCED SOLID TUMORS ; PHASE-I ; RECOMBINANT HUMAN ENDOSTATIN ; SYSTEM ; SURGERY ; resistance ; NUMBER ; COLORECTAL-CANCER ; chemotherapy ; systems biology ; HEMATOPOIETIC STEM-CELLS ; I CLINICAL-TRIAL ; cancer therapy ; ENDOSTATIN ; ANGIOGENESIS INHIBITOR ENDOSTATIN ; COLLAGEN XVIII ; ENDOGENOUS INHIBITOR ; ENDOTHELIAL PROGENITOR CELLS ; RESPONSIVENESS
    Abstract: The hypothesis that tumor growth and metastasis is angiogenesis-dependent was proposed by Judah Folkman in 1971. Its major implication is that blocking angiogenesis could be a strategy for arresting tumor growth. This hypothesis is now supported by extensive experimental evidence, and hence the angiogenic switch and microvascular endothelial cells recruited by the tumor have emerged as important targets in cancer therapy. A large number of proangiogenic and antiangiogenic factors have been discovered. At least three angiogenesis inhibitors have received FDA approval in the US, with Avastin (anti-VEGF-antibody) also approved in 26 other countries. The recognition that antiangiogenic therapy is becoming the fourth therapeutic modality in addition to surgery, chemotherapy and radiotherapy underlines the urgent need to understand the systems biology of the antiangiogenic response. A particularly important question for cancer therapy is whether antiangiogenic therapy will also face the same drug resistance as one sees with other treatment modalities. Recently, the cellular signaling induced by the endogenous angiogenesis inhibitor - endostatin - was dissected revealing that the antiangiogenic response is characterized by a large number of individual genetic signals, which are highly coordinated and interdependent. The objective of this review is to elucidate the multifaceted nature of tumor angiogenesis, and to discuss the subtle but important distinctions that exist between variations in tumor responsiveness that evolve with antiangiogenic therapy and the classic resistance that frequently develops with conventional therapy. Furthermore, this review discusses the implications of current findings for cancer treatment and potential ways of overcoming or predicting tumor resistance to these agents. (c) 2005 Elsevier Ltd. All rights reserved
    Type of Publication: Journal article published
    PubMed ID: 15939343
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Abstract: BACKGROUND: Cardiac surgery with cardiopulmonary bypass (CS/CPB) is associated with increased risk for postoperative complications causing substantial morbidity and mortality. To identify the molecular mechanisms underlying CS/CPB-induced pathophysiology we employed an integrative systems biology approach using the whole blood transcriptome as the sentinel organ. METHODOLOGY/PRINCIPAL FINDINGS: Total RNA was isolated and globin mRNA depleted from whole blood samples prospectively collected from 10 patients at time points prior (0), 2 and 24 hours following CS/CPB. Genome-wide transcriptional analysis revealed differential expression of 610 genes after CS/CPB (p〈0.01). Among the 375 CS/CPB-upregulated genes, we found a gene-regulatory network consisting of 50 genes, reminiscent of activation of a coordinated genetic program triggered by CS/CPB. Intriguingly, the highly connected hub nodes of the identified network included key sensors of ischemia-reperfusion (HIF-1alpha and C/EBPbeta). Activation of this network initiated a concerted inflammatory response via upregulation of TLR-4/5, IL1R2/IL1RAP, IL6, IL18/IL18R1/IL18RAP, MMP9, HGF/HGFR, CalgranulinA/B, and coagulation factors F5/F12 among others. Differential regulation of 13 candidate genes including novel, not hitherto CS/CBP-associated genes, such as PTX3, PGK1 and Resistin, was confirmed using real-time quantitative RT-PCR. In support of the mRNA data, differential expression of MMP9, MIP1alpha and MIP1beta plasma proteins was further confirmed in 34 additional patients. CONCLUSIONS: Analysis of blood transcriptome uncovered critical signaling pathways governing the CS/CPB-induced pathophysiology. The molecular signaling underlying ischemia reperfusion and inflammatory response is highly intertwined and includes pro-inflammatory as well as cardioprotective elements. The herein identified candidate genes and pathways may provide promising prognostic biomarker and therapeutic targets.
    Type of Publication: Journal article published
    PubMed ID: 21048961
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: IONIZING-RADIATION ; X-RAYS ; IN-SITU HYBRIDIZATION ; MAMMALIAN-CELLS ; DOUBLE-STRAND BREAKS ; INDUCED CELL DEATH ; HUMAN-LYMPHOCYTES ; MOUSE EMBRYOS ; INDUCED GENOMIC INSTABILITY ; REPRODUCTIVE DEATH
    Abstract: PURPOSE: To analyse spectra of chromosome aberrations induced in vitro by low LET radiation, in order to characterize radiation damage mechanisms quantitatively. METHODS: Multiplex fluorescence in situ hybridization (mFISH) allows the simultaneous identification of each homologous chromosome pair by its own colour. mFISH data, specifying number distributions for colour junctions in metaphases of human peripheral blood lymphocytes 72 hours after exposure in vitro to a 3 Gy gamma-ray dose, were combined with similar, previously published results. Monte Carlo computer implementations of radiobiological models for chromosome aberration production guided quantitative analyses, which took into account distribution of cells among different metaphases and lethal effects or preferential elimination of some aberrations at cell division. RESULTS AND CONCLUSIONS: Standard models of DNA damage induction/repair/misrepair explain the main trends of the data as regards the fraction of metaphases having a particular number of colours involved in colour junctions. However, all standard models systematically under-predict the observed fraction of metaphases where a large number of different chromosomes participate in aberrations. An early appearance of chromosomal instability could explain most of the discrepancies.
    Type of Publication: Journal article published
    PubMed ID: 12556338
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Keywords: EXPRESSION ; validation ; MESSENGER-RNA ; QUANTITATION ; PROSTATE-CANCER ; SELECTION ; HOUSEKEEPING GENES ; normalization ; TIME RT-PCR ; SWITCH
    Abstract: ABSTRACT: BACKGROUND: Quantitative analysis of transcriptional regulation of genes is a prerequisite for a better understanding of the molecular mechanisms of action of different radiation qualities such as photon, proton or carbon ion irradiation. Microarrays and real-time quantitative RT-PCR (qRT-PCR) are considered the two cornerstones of gene expression analysis. In interpreting these results it is critical to normalize the expression levels of the target genes by that of appropriately selected endogenous control genes (ECGs) or housekeeping genes. We sought to systematically investigate common ECG candidates for their stability after different radiation modalities in different human cell lines by qRT-PCR. We aimed to identify the most robust set of ECGs or housekeeping genes for transcriptional analysis in irradiation studies. METHODS: We tested the expression stability of 32 ECGs in three human cancer cell lines. The epidermoid carcinoma cells (A431), the non small cell lung carcinoma cells (A549) and the pancreatic adenocarincoma cells (BxPC3) were irradiated with photon, proton and carbon ions. Expression Heat maps, clustering and statistic algorithms were employed using SUMO software package. The expression stability was evaluated by computing: mean, standard deviation, ANOVA, coefficient of variation and the stability measure (M) given by the geNorm algorithm. RESULTS: Expression analysis revealed significant cell type specific regulation of 18 out of 32 ECGs (p 〈 0.05). A549 and A431 cells shared a similar pattern of ECG expression as the function of different radiation qualities as compared to BxPC3. Of note, the ribosomal protein 18S, one of the most frequently used ECG, was differentially regulated as the function of different radiation qualities (p 〈/= 0.01). A comprehensive search for the most stable ECGs using the geNorm algorithm identified 3 ECGs for A431 and BxPC3 to be sufficient for normalization. In contrast, 6 ECGs were required to properly normalize expression data in the more variable A549 cells. Considering both variables tested, i.e. cell type and radiation qualities, 5 genes-- RPLP0, UBC, PPIA, TBP and PSMC4-- were identified as the consensus set of stable ECGs. CONCLUSIONS: Caution is warranted when selecting the internal control gene for the qRT-PCR gene expression studies. Here, we provide a template of stable ECGs for investigation of radiation induced gene expression.
    Type of Publication: Journal article published
    PubMed ID: 22594372
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Abstract: The energy deposition characteristics of proton radiation have attracted considerable attention in light of its implications for carcinogenesis risk in space travel, as well for application to cancer treatment. In space, it is the principle component of the galactic cosmic radiation to which astronauts will be exposed. For treatment, an increasing number of proton facilities are being established to exploit the physical advantages of this radiation type. However, the possibility that there may also be biologically based advantages to proton exposure has not been considered in either context. We demonstrate here that high-energy proton irradiation can inhibit expression of major pro-angiogenic factors and multiple angiogenesis-associated processes, including invasion and endothelial cell proliferation, which is prominent in cancer progression. Dose-dependent suppression of angiogenic signaling was demonstrated for both cancer and nontransformed cells. Pan-genomic microarray analysis and RT-PCR revealed that post-irradiation (0.5, 1.0 and 2.0 Gy), critical pro-angiogenic signaling factors including: vascular endothelial growth factor (VEGF), interleukin 6 and 8 (IL-6, IL-8) and hypoxia-inducible factor-1 alpha (HIF-1A), were significantly downregulated. Co-culture studies demonstrated that endothelial cell proliferation and invasion were inhibited by culturing with irradiated cancer or fibroblast cells, which suggests that proton irradiation may, in addition to direct action, contribute to angiogenesis suppression through modulation of paracrine signalings from targeted cells. Addition of recombinant IL-8 or VEGF partially restored these functions in vitro, while in vivo, an attenuated tumor growth rate was demonstrated for proton-irradiated human lung cancer cells. Taken together, these findings provide novel pre-clinical evidence that proton irradiation may, in addition to its physical targeting advantages, have important biological ramifications that should be a consideration in the optimization of proton therapy.
    Type of Publication: Journal article published
    PubMed ID: 22702646
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: radiation ; DAMAGE ; TERRITORIES ; ORGANIZATION ; nuclear architecture ; HUMAN-LYMPHOCYTES ; GAMMA-RAYS ; EXCHANGE ABERRATIONS ; PROXIMITY ; CENTROMERES
    Abstract: To test quantitatively whether there are systematic chromosome-chromosome associations within human interphase nuclei, interchanges between all possible heterologous pairs of chromosomes were measured with 24-color whole-chromosome painting (multiplex FISH), after damage to interphase lymphocytes by sparsely ionizing radiation in vitro. An excess of interchanges for a specific chromosome pair would indicate spatial proximity between the chromosomes comprising that pair. The experimental design was such that quite small deviations from randomness (extra pairwise interchanges within a group of chromosomes) would be detectable. The only statistically significant chromosome cluster was a group of five chromosomes previously observed to be preferentially located near the center of the nucleus. However, quantitatively, the overall deviation from randomness within the whole genome was small. Thus, whereas some chromosome-chromosome associations are clearly present, at the whole-chromosomal level, the predominant overall pattern appears to be spatially random.
    Type of Publication: Journal article published
    PubMed ID: 12403811
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...