Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: SURVIVAL ; tumor ; MUTATIONS ; REVEALS ; BRAF ; ACQUIRED-RESISTANCE ; CANCER GENOME ; VEMURAFENIB ; SEQUENCING DATA ; MEK
    Abstract: Most patients with BRAF(V600)-mutant metastatic melanoma develop resistance to selective RAF kinase inhibitors. The spectrum of clinical genetic resistance mechanisms to RAF inhibitors and options for salvage therapy are incompletely understood. We performed whole-exome sequencing on formalin-fixed, paraffin-embedded tumors from 45 patients with BRAF(V600)-mutant metastatic melanoma who received vemurafenib or dabrafenib monotherapy. Genetic alterations in known or putative RAF inhibitor resistance genes were observed in 23 of 45 patients (51%). Besides previously characterized alterations, we discovered a "long tail" of new mitogen-activated protein kinase (MAPK) pathway alterations (MAP2K2, MITF) that confer RAF inhibitor resistance. In three cases, multiple resistance gene alterations were observed within the same tumor biopsy. Overall, RAF inhibitor therapy leads to diverse clinical genetic resistance mechanisms, mostly involving MAPK pathway reactivation. Novel therapeutic combinations may be needed to achieve durable clinical control of BRAF(V600)-mutant melanoma. Integrating clinical genomics with preclinical screens may model subsequent resistance studies.
    Type of Publication: Journal article published
    PubMed ID: 24265153
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-06-19
    Description: Major international projects are underway that are aimed at creating a comprehensive catalogue of all the genes responsible for the initiation and progression of cancer. These studies involve the sequencing of matched tumour-normal samples followed by mathematical analysis to identify those genes in which mutations occur more frequently than expected by random chance. Here we describe a fundamental problem with cancer genome studies: as the sample size increases, the list of putatively significant genes produced by current analytical methods burgeons into the hundreds. The list includes many implausible genes (such as those encoding olfactory receptors and the muscle protein titin), suggesting extensive false-positive findings that overshadow true driver events. We show that this problem stems largely from mutational heterogeneity and provide a novel analytical methodology, MutSigCV, for resolving the problem. We apply MutSigCV to exome sequences from 3,083 tumour-normal pairs and discover extraordinary variation in mutation frequency and spectrum within cancer types, which sheds light on mutational processes and disease aetiology, and in mutation frequency across the genome, which is strongly correlated with DNA replication timing and also with transcriptional activity. By incorporating mutational heterogeneity into the analyses, MutSigCV is able to eliminate most of the apparent artefactual findings and enable the identification of genes truly associated with cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3919509/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3919509/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lawrence, Michael S -- Stojanov, Petar -- Polak, Paz -- Kryukov, Gregory V -- Cibulskis, Kristian -- Sivachenko, Andrey -- Carter, Scott L -- Stewart, Chip -- Mermel, Craig H -- Roberts, Steven A -- Kiezun, Adam -- Hammerman, Peter S -- McKenna, Aaron -- Drier, Yotam -- Zou, Lihua -- Ramos, Alex H -- Pugh, Trevor J -- Stransky, Nicolas -- Helman, Elena -- Kim, Jaegil -- Sougnez, Carrie -- Ambrogio, Lauren -- Nickerson, Elizabeth -- Shefler, Erica -- Cortes, Maria L -- Auclair, Daniel -- Saksena, Gordon -- Voet, Douglas -- Noble, Michael -- DiCara, Daniel -- Lin, Pei -- Lichtenstein, Lee -- Heiman, David I -- Fennell, Timothy -- Imielinski, Marcin -- Hernandez, Bryan -- Hodis, Eran -- Baca, Sylvan -- Dulak, Austin M -- Lohr, Jens -- Landau, Dan-Avi -- Wu, Catherine J -- Melendez-Zajgla, Jorge -- Hidalgo-Miranda, Alfredo -- Koren, Amnon -- McCarroll, Steven A -- Mora, Jaume -- Lee, Ryan S -- Crompton, Brian -- Onofrio, Robert -- Parkin, Melissa -- Winckler, Wendy -- Ardlie, Kristin -- Gabriel, Stacey B -- Roberts, Charles W M -- Biegel, Jaclyn A -- Stegmaier, Kimberly -- Bass, Adam J -- Garraway, Levi A -- Meyerson, Matthew -- Golub, Todd R -- Gordenin, Dmitry A -- Sunyaev, Shamil -- Lander, Eric S -- Getz, Gad -- ES065073/ES/NIEHS NIH HHS/ -- T32 CA009172/CA/NCI NIH HHS/ -- T32 CA009216/CA/NCI NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- U24 CA143845/CA/NCI NIH HHS/ -- U54 HG003067/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- England -- Nature. 2013 Jul 11;499(7457):214-8. doi: 10.1038/nature12213. Epub 2013 Jun 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23770567" target="_blank"〉PubMed〈/a〉
    Keywords: Artifacts ; DNA Replication Timing ; Exome/genetics ; False Positive Reactions ; Gene Expression ; *Genetic Heterogeneity ; Genome, Human/genetics ; Humans ; Lung Neoplasms/genetics ; Mutation/*genetics ; Mutation Rate ; Neoplasms/classification/*genetics/pathology ; Neoplasms, Squamous Cell/genetics ; Oncogenes/*genetics ; Reproducibility of Results ; Sample Size
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-01-26
    Description: Systematic sequencing of human cancer genomes has identified many recurrent mutations in the protein-coding regions of genes but rarely in gene regulatory regions. Here, we describe two independent mutations within the core promoter of telomerase reverse transcriptase (TERT), the gene coding for the catalytic subunit of telomerase, which collectively occur in 50 of 70 (71%) melanomas examined. These mutations generate de novo consensus binding motifs for E-twenty-six (ETS) transcription factors, and in reporter assays, the mutations increased transcriptional activity from the TERT promoter by two- to fourfold. Examination of 150 cancer cell lines derived from diverse tumor types revealed the same mutations in 24 cases (16%), with preliminary evidence of elevated frequency in bladder and hepatocellular cancer cells. Thus, somatic mutations in regulatory regions of the genome may represent an important tumorigenic mechanism.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423787/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423787/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Franklin W -- Hodis, Eran -- Xu, Mary Jue -- Kryukov, Gregory V -- Chin, Lynda -- Garraway, Levi A -- DP2 OD002750/OD/NIH HHS/ -- DP2OD002750/OD/NIH HHS/ -- R33 CA126674/CA/NCI NIH HHS/ -- R33CA126674/CA/NCI NIH HHS/ -- T32 CA009172/CA/NCI NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- T32GM07753/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 22;339(6122):957-9. doi: 10.1126/science.1229259. Epub 2013 Jan 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23348506" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Carcinoma, Hepatocellular/genetics ; Cell Line, Tumor ; Cell Transformation, Neoplastic ; *Gene Expression Regulation, Neoplastic ; Humans ; Liver Neoplasms/genetics ; Melanoma/*genetics ; *Mutation ; *Promoter Regions, Genetic ; Proto-Oncogene Proteins c-ets/metabolism ; Telomerase/chemistry/*genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-05-25
    Description: Melanoma is notable for its metastatic propensity, lethality in the advanced setting and association with ultraviolet exposure early in life. To obtain a comprehensive genomic view of melanoma in humans, we sequenced the genomes of 25 metastatic melanomas and matched germline DNA. A wide range of point mutation rates was observed: lowest in melanomas whose primaries arose on non-ultraviolet-exposed hairless skin of the extremities (3 and 14 per megabase (Mb) of genome), intermediate in those originating from hair-bearing skin of the trunk (5-55 per Mb), and highest in a patient with a documented history of chronic sun exposure (111 per Mb). Analysis of whole-genome sequence data identified PREX2 (phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 2)--a PTEN-interacting protein and negative regulator of PTEN in breast cancer--as a significantly mutated gene with a mutation frequency of approximately 14% in an independent extension cohort of 107 human melanomas. PREX2 mutations are biologically relevant, as ectopic expression of mutant PREX2 accelerated tumour formation of immortalized human melanocytes in vivo. Thus, whole-genome sequencing of human melanoma tumours revealed genomic evidence of ultraviolet pathogenesis and discovered a new recurrently mutated gene in melanoma.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3367798/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3367798/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berger, Michael F -- Hodis, Eran -- Heffernan, Timothy P -- Deribe, Yonathan Lissanu -- Lawrence, Michael S -- Protopopov, Alexei -- Ivanova, Elena -- Watson, Ian R -- Nickerson, Elizabeth -- Ghosh, Papia -- Zhang, Hailei -- Zeid, Rhamy -- Ren, Xiaojia -- Cibulskis, Kristian -- Sivachenko, Andrey Y -- Wagle, Nikhil -- Sucker, Antje -- Sougnez, Carrie -- Onofrio, Robert -- Ambrogio, Lauren -- Auclair, Daniel -- Fennell, Timothy -- Carter, Scott L -- Drier, Yotam -- Stojanov, Petar -- Singer, Meredith A -- Voet, Douglas -- Jing, Rui -- Saksena, Gordon -- Barretina, Jordi -- Ramos, Alex H -- Pugh, Trevor J -- Stransky, Nicolas -- Parkin, Melissa -- Winckler, Wendy -- Mahan, Scott -- Ardlie, Kristin -- Baldwin, Jennifer -- Wargo, Jennifer -- Schadendorf, Dirk -- Meyerson, Matthew -- Gabriel, Stacey B -- Golub, Todd R -- Wagner, Stephan N -- Lander, Eric S -- Getz, Gad -- Chin, Lynda -- Garraway, Levi A -- DP2 OD002750/OD/NIH HHS/ -- DP2 OD002750-01/OD/NIH HHS/ -- R33 CA126674/CA/NCI NIH HHS/ -- R33 CA126674-03/CA/NCI NIH HHS/ -- R33 CA126674-04/CA/NCI NIH HHS/ -- R33 CA155554/CA/NCI NIH HHS/ -- R33 CA155554-01/CA/NCI NIH HHS/ -- T32 CA009172/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 May 9;485(7399):502-6. doi: 10.1038/nature11071.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22622578" target="_blank"〉PubMed〈/a〉
    Keywords: Chromosome Breakpoints/radiation effects ; DNA Damage ; DNA Mutational Analysis ; Gene Expression Regulation, Neoplastic ; Genome, Human/*genetics ; Guanine Nucleotide Exchange Factors/*genetics/metabolism ; Humans ; Melanocytes/metabolism/pathology ; Melanoma/*genetics/pathology ; Mutagenesis/radiation effects ; Mutation/*genetics/radiation effects ; Oncogenes/genetics ; Sunlight/*adverse effects ; Ultraviolet Rays/adverse effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...