Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    ISSN: 1432-1777
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. We have previously reported that CDV (carnitine deficiency-associated gene expressed in ventricle)-1 was a down-regulated gene in the hypertrophied ventricle of carnitine-deficient juvenile visceral steatosis mice and that the related gene (CDV-1R) showed no tissue specificity and no sensitivity to carnitine deficiency. In the present paper, the CDV-1/1R gene was isolated from a mouse genomic BAC library, and the genomic structure was characterized. We found that the CDV-1/1R gene consisted of at least 19 exons and encompassed approximately 48 kb. The splice sites conformed to the GT-AG rule, and the CDV-1R mRNA containing 19 exons was processed. CDV-1 mRNA containing 5 exons was constructed from the 3′ half of CDV-1R. The first exon of CDV-1 consisted of the 3′ side (116 bp) of intron 14 and exon 15 (87 bp) of CDV-1R. The presumed promoter sequence for CDV-1 located in the intron 14 of CDV-1R contained the common TATA box and consensus binding sites for various transcription factors (Nkx-2.5, Sp1, C/EBP, SRF, YY1, and CREB), which seem to play roles in the heart-specific expression and carnitine deficiency-associated suppression of CDV-1. In the upstream region of the CDV-1 promoter, we found two VNTRs, 13 repeats of GATA1, and 16 copies of STRE involved in yeast stress response. The CDV-1/1R gene was located close to D5MIT68 on mouse Chromosome (Chr) 5, corresponding to human Chr 12q24. All these data revealed that two mRNA species, CDV-1 and CDV-1R, are expressed tissue-specifically by using promoters peculiar to each transcript in a single gene.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Both tetrodotoxin-sensitive (TTX-S) and TTX-resistant (TTX-R) voltage-dependent Na+ channels are expressed in the human neuroblastoma cell line NB-1, but a gene encoding the TTX-R Na+ channel has not been identified. In this study, we have cloned cDNA encoding the α subunit of the TTX-R Na+ channel in NB-1 cells and designated it hNbR1. The longest open reading frame of hNbR1 (accession no. 〈accessionId ref="info:ddbj-embl-genbank/AB158469"〉AB158469) encodes 2016 amino acid residues. Sequence analysis has indicated that hNbR1 is highly homologous with human cardiac Nav1.5/SCN5A with 〉 99% amino acid identity. The presence of a cysteine residue (Cys373) in the pore-loop region of domain I is consistent with the supposition that hNbR1 is resistant to TTX. Analysis of the genomic sequence of SCN5A revealed a new exon encoding S3 and S4 of domain I (exon 6A). In addition, an alternative splicing variant, lacking exon 18, that encodes 54 amino acids in the intracellular loop between domains II and III was found (hNbR1-2; accession no. 〈accessionId ref="info:ddbj-embl-genbank/AB158470"〉AB158470). Na+ currents in human embryonic kidney cells (〈accessionId ref="info:ddbj-embl-genbank/HEK293"〉HEK293) transfected with hNbR1 or hNbR1-2 showed electrophysiological properties similar to those for TTX-R INa in NB-1 cells. The IC50 for the TTX block was ≈ 8 µm in both variants. These results suggest that SCN5A has a newly identified exon for alternative splicing and is more widely expressed than previously thought.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Unc-33-like protein (Ulip)6, a brain-specific phosphoprotein of the Ulip/collapsin response mediator protein family, was originally identified in our laboratory by yeast two-hybrid screening using the cytoplasmic N-terminal domain of the neuronal glycine transporter, glycine transporter (GlyT) 2, as a bait. Here, the interaction of Ulip6 with the N-terminal domain of GlyT2 was found to be specific for this member of the Ulip/collapsin response mediator protein family and to involve amino acids 135–184 of GlyT2. In pull-down assays and coimmunoprecipitation experiments with rat spinal cord extract, the presence of phosphatase inhibitors significantly enhanced binding of Ulip6 to GlyT2. Subcellular fractionation of spinal cord and retina homogenates at different developmental stages showed Ulip6 immunoreactivity to be associated with light vesicles that were distinct from GlyT2-containing and synaptic vesicles. Immunocytochemistry revealed punctate Ulip6 immunoreactivity in both somatic regions and processes of cultured spinal neurones; no colocalization with GlyT2 or other synaptic marker proteins was found. In retina, which expresses only GlyT1 but not GlyT2, Ulip6 was detected in the inner plexiform layer and along the somata and processes of selected bipolar, amacrine and ganglion cells. Our data support a model in which Ulip6 transiently interacts with GlyT2 in a phosphorylation-dependent manner.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...