Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1615-6102
    Keywords: Microtubules ; Protoplasts ; Mougeotia ; Polarity ; Electric fields
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Initially non-polar protoplasts of the green algaMougeotia will regenerate to re-establish their original cylindrical cell shape. The orientation of the growth axis of regenerating protoplasts held in agarose was independent of both the direction of incident white light and gravity. Protoplasts elongated parallel to applied DC electric fields of approx. 0.2 Vcm−1 (1 mV/protoplast) and greater, with an increasing percentage oriented with increasing field strength. At the maximum field strength used (10 mV/cell), 53% of protoplasts were oriented within +- 10° of the 0/180° axis of the field. In untreated controls, the orientation of elongation was random. Protoplast survival was unaffected by field treatment. Some protoplasts (up to 37% in 10 mV/cell fields) formed outgrowths towards the cathode and occasionally towards the anode. Regenerating protoplasts in fields displayed the normal sequence of microtubule reorganization. This means that the positioning of the ordered symmetrical array of microtubules centred on two foci that appears within 3 to 4 h, and the subsequent organization of microtubules by 8 to 12 h into a band that intersects both foci and which is transverse to the axis of elongation (Galway and Hardham 1986), may be controlled by externally applied electric fields. In the region of this microtubule band, the applied field causes the plasma membrane to be stretched parallel to the field (Bryant and Wolfe 1987). We suggest that microtubules may become oriented perpendicular to the direction of field-induced membrane stretching, and that membrane stretching may be one of the orienting mechanisms for membrane-linked microtubules in elongating plant cells.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1615-6102
    Keywords: High pressure freezing ; Plunge freezing ; Freeze substitution ; Phytophthora ; Sporangia ; Immunogold labelling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The effects of high pressure on the ultrastructure of sporangia ofPhytophthora cinnamomi andP. palmivora have been examined by comparing sporangia frozen in a Balzers hyperbaric freezer or pressurized in a French pressure cell with sporangia plunge frozen at ambient pressure. Both freeze fixation methods provided excellent preservation of most cell structures, but one organelle type seen in plunge frozen material, the large peripheral vesicle (LPV), was not observed in high pressure frozen sporangia. Instead, these sporangia contained large irregularly shaped structures which exhibit the patterns of spatial distribution and, forP. cinnamomi, the monoclonal antibody binding characteristic of LPVs. These findings suggest that some factor of the hyperbaric freezing process causes LPVs to be degraded. Sporangia ofP. cinnamomi that had been pressurized in a French pressure cell also exhibited large structures with the spatial distribution and monoclonal antibody binding characteristic of LPVs. The apparent expansion of LPVs that follows from both pressurizing treatments causes considerable passive disruption of sporangial structure. This is the first report of a major disturbance of cell structure from use of the Balzers hyperbaric freezer, and reflects the lability, noted in previous work, of LPVs inPhytophthora.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1615-6102
    Keywords: Oomycetes ; Pythium ; Phytophthora ; Monoclonal antibodies ; Surface antigens ; Immunocytochemistry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The oomycetes are a class of protists that produce biflagellate asexual zoospores. Members of the oomycetes have close phylogenetic affinities with the chromophyte algae and are widely divergent from the higher fungi. This review focuses on two genera,Phytophthora andPythium, which belong to the family Pythiaceae, and the order Peronosporales. These two genera contain many species that cause serious diseases in plants. Molecules on the surface of zoospores and cysts of these organisms are likely to play crucial roles in the infection of host plants. Knowledge of the properties of the surface of these cells should thus help increase our understanding of the infection process. Recent studies ofPhytophthora cinnamomi andPythium aphanidermatum have used lectins to analyse surface carbohydrates and have generated monoclonal antibodies (MAbs) directed towards a variety of zoospore and cysts surface components. Labelling studies with these probes have detected molecular differences between the surface of the cell body and of the flagella of the zoospores. They have been used to follow changes in surface components during encystment, including the secretion of an adhesive that bonds the spores to the host surface. Binding of lectin and antibody probes to the surface of living zoospores can induce encystment, giving evidence of cell receptors involved in this process. Freeze-substitution and immunolabelling studies have greatly augmented our understanding of the synthesis and assembly of the zoospore surface during zoosporogenesis. Synthesis of a variety of zoospore components begins when sporulation is induced. Cleavage of the multinucleate sporangium is achieved through the progressive extension of partitioning membranes, and a number of surface antigens are assembled onto the zoospore surface during cleavage. Comparisons of antibody binding to many isolates and species ofPhytophthora andPythium have revealed that surface components on zoospores and cysts exhibit a range of taxonomic specificities. Surface antigens or epitopes may occur on only a few isolates of a species; they may be species-specific, genus-specific or occur on the spores of both genera. Spore surface antigens thus promise to be of significant value for studies of the taxonomy and phylogeny of these protists, as well as for disease diagnosis.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1615-6102
    Keywords: Alga ; Cell wall ; Cytoplast ; Microtubule ; Mougeotia ; Protoplast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A small proportion of nucleate subprotoplasts (karyoplasts) and enucleate subprotoplasts (cytoplasts) are formed during the preparation of protoplasts from the filamentous green algaMougeotia. Regeneration ofMougeotia protoplasts is an orderly process known to involve reorganisation of cortical microtubules into polar arrays centered upon two opposing foci, synthesis of new cell walls and elongation to reform cylindrical cells. The ability of cytoplasts to carry out microtubule reorganisation and cell wall synthesis was investigated by combining Hoechst staining, to distinguish cytoplasts from karyoplasts and protoplasts, with immunofluorescent staining of microtubules and Calcofluor or Tinopal staining of cell walls. Cytoplasts survived at least 20 h in culture, but did not elongate. However, cytoplasts did participate in the first steps of protoplast regeneration. The majority of cytoplasts synthesized some cell wall material, while a small proportion was able to form ordered arrays of cortical microtubules indistinguishable from those in regenerating nucleate protoplasts. These results demonstrate the ability of plant microtubules to form new, orderly arrays in the absence of a nucleus, and suggest that the reestablishment of axiality in the protoplasts does not require a nucleus or nuclear DNA transcription.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...