Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Densification behavior of precursor-derived Si-C-N ceramics by hot isostatic pressing (HIP) has been investigated to obtain dense ceramics derived from polymer precursor. An as-pyrolyzed ceramic monolith, which had a porosity of about 17%, could be deformed up to a strain of 8% in preliminary uniaxial compression tests. The flow stress of the material was much higher than 200 MPa at 1600°C; thus high stress was necessary for densification by HIP. The density of the monolith increased from 1.9 to 2.4 g/cm3 by HIP at 1600°C and 980 MPa. Although the number of pores decreased, large pores were formed in the hot isostatically pressed monolith. On the other hand, denser ceramics, in which pores were not observed by optical microscopy, were obtained by hot isostatically pressing the pyrolyzed powder compact.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...