Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-12-18
    Description: Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD). These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low-frequency coding variants with large effects on LOAD risk, we carried out whole-exome sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large LOAD case-control data sets. A rare variant in PLD3 (phospholipase D3; Val232Met) segregated with disease status in two independent families and doubled risk for Alzheimer's disease in seven independent case-control series with a total of more than 11,000 cases and controls of European descent. Gene-based burden analyses in 4,387 cases and controls of European descent and 302 African American cases and controls, with complete sequence data for PLD3, reveal that several variants in this gene increase risk for Alzheimer's disease in both populations. PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer's disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer's disease brains compared to control brains. Overexpression of PLD3 leads to a significant decrease in intracellular amyloid-beta precursor protein (APP) and extracellular Abeta42 and Abeta40 (the 42- and 40-residue isoforms of the amyloid-beta peptide), and knockdown of PLD3 leads to a significant increase in extracellular Abeta42 and Abeta40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may help to identify rare variants with large effects on risk for disease or other complex traits.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050701/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050701/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cruchaga, Carlos -- Karch, Celeste M -- Jin, Sheng Chih -- Benitez, Bruno A -- Cai, Yefei -- Guerreiro, Rita -- Harari, Oscar -- Norton, Joanne -- Budde, John -- Bertelsen, Sarah -- Jeng, Amanda T -- Cooper, Breanna -- Skorupa, Tara -- Carrell, David -- Levitch, Denise -- Hsu, Simon -- Choi, Jiyoon -- Ryten, Mina -- UK Brain Expression Consortium -- Hardy, John -- Trabzuni, Daniah -- Weale, Michael E -- Ramasamy, Adaikalavan -- Smith, Colin -- Sassi, Celeste -- Bras, Jose -- Gibbs, J Raphael -- Hernandez, Dena G -- Lupton, Michelle K -- Powell, John -- Forabosco, Paola -- Ridge, Perry G -- Corcoran, Christopher D -- Tschanz, Joann T -- Norton, Maria C -- Munger, Ronald G -- Schmutz, Cameron -- Leary, Maegan -- Demirci, F Yesim -- Bamne, Mikhil N -- Wang, Xingbin -- Lopez, Oscar L -- Ganguli, Mary -- Medway, Christopher -- Turton, James -- Lord, Jenny -- Braae, Anne -- Barber, Imelda -- Brown, Kristelle -- Alzheimer's Research UK Consortium -- Passmore, Peter -- Craig, David -- Johnston, Janet -- McGuinness, Bernadette -- Todd, Stephen -- Heun, Reinhard -- Kolsch, Heike -- Kehoe, Patrick G -- Hooper, Nigel M -- Vardy, Emma R L C -- Mann, David M -- Pickering-Brown, Stuart -- Kalsheker, Noor -- Lowe, James -- Morgan, Kevin -- David Smith, A -- Wilcock, Gordon -- Warden, Donald -- Holmes, Clive -- Pastor, Pau -- Lorenzo-Betancor, Oswaldo -- Brkanac, Zoran -- Scott, Erick -- Topol, Eric -- Rogaeva, Ekaterina -- Singleton, Andrew B -- Kamboh, M Ilyas -- St George-Hyslop, Peter -- Cairns, Nigel -- Morris, John C -- Kauwe, John S K -- Goate, Alison M -- 081864/Wellcome Trust/United Kingdom -- 089698/Wellcome Trust/United Kingdom -- 089703/Wellcome Trust/United Kingdom -- 100140/Wellcome Trust/United Kingdom -- 1R01AG041797/AG/NIA NIH HHS/ -- 5U24AG026395/AG/NIA NIH HHS/ -- AG005133/AG/NIA NIH HHS/ -- AG023652/AG/NIA NIH HHS/ -- AG030653/AG/NIA NIH HHS/ -- AG041718/AG/NIA NIH HHS/ -- AG07562/AG/NIA NIH HHS/ -- G0802189/Medical Research Council/United Kingdom -- G0802462/Medical Research Council/United Kingdom -- G0901254/Medical Research Council/United Kingdom -- G1100695/Medical Research Council/United Kingdom -- K01 AG046374/AG/NIA NIH HHS/ -- MC_G1000734/Medical Research Council/United Kingdom -- NIH P50 AG05681/AG/NIA NIH HHS/ -- NIH R01039700/PHS HHS/ -- P01 AG003991/AG/NIA NIH HHS/ -- P01 AG026276/AG/NIA NIH HHS/ -- P01 AG03991/AG/NIA NIH HHS/ -- P30 NS069329/NS/NINDS NIH HHS/ -- P30-NS069329/NS/NINDS NIH HHS/ -- P50 AG005133/AG/NIA NIH HHS/ -- P50 AG005681/AG/NIA NIH HHS/ -- R01 AG011380/AG/NIA NIH HHS/ -- R01 AG030653/AG/NIA NIH HHS/ -- R01 AG035083/AG/NIA NIH HHS/ -- R01 AG039700/AG/NIA NIH HHS/ -- R01 AG041718/AG/NIA NIH HHS/ -- R01 AG041797/AG/NIA NIH HHS/ -- R01 AG042611/AG/NIA NIH HHS/ -- R01 AG044546/AG/NIA NIH HHS/ -- R01-AG035083/AG/NIA NIH HHS/ -- R01-AG042611/AG/NIA NIH HHS/ -- R01-AG044546/AG/NIA NIH HHS/ -- R01-AG11380/AG/NIA NIH HHS/ -- R01-AG18712/AG/NIA NIH HHS/ -- R01-AG21136/AG/NIA NIH HHS/ -- R01AG21136/AG/NIA NIH HHS/ -- R25 DA027995/DA/NIDA NIH HHS/ -- U24 AG021886/AG/NIA NIH HHS/ -- U24 AG026395/AG/NIA NIH HHS/ -- U24AG21886/AG/NIA NIH HHS/ -- WT089698/Wellcome Trust/United Kingdom -- ZIA AG000950-11/Intramural NIH HHS/ -- ZO1 AG000950-10/AG/NIA NIH HHS/ -- ZO1AG000950-11/AG/NIA NIH HHS/ -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2014 Jan 23;505(7484):550-4. doi: 10.1038/nature12825. Epub 2013 Dec 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Psychiatry, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA [2] Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University 425 South Euclid Avenue, St. Louis, Missouri 63110, USA. ; 1] Department of Psychiatry, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA [2] Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University 425 South Euclid Avenue, St. Louis, Missouri 63110, USA [3]. ; 1] Department of Psychiatry, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA [2]. ; Department of Psychiatry, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA. ; 1] Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK [2] Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Building 35 Room 1A1014, 35 Lincoln Drive, Bethesda, Maryland 20892, USA. ; Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK. ; Department of Medical and Molecular Genetics, King's College London, 16 De Crespigny Park, London SE5 8AF UK. ; MRC Sudden Death Brain Bank Project, University of Edinburgh, South Bridge, Edinburgh EH8 9YL UK. ; 1] Institute of Psychiatry, King's College London, 16 De Crespigny Park, London SE5 8AF, UK [2] Neuroimaging Genetics, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland 4006, Australia. ; Institute of Psychiatry, King's College London, 16 De Crespigny Park, London SE5 8AF, UK. ; Istituto di Genetica delle Popolazioni - CNR, Trav. La Crucca, 3 - Reg. Baldinca - 07100 Li Punti, Sassari, Italy. ; Department of Biology, Brigham Young University, Provo, Utah 84602, USA. ; 1] Department of Mathematics and Statistics, Utah State University, Logan, Utah 84322, USA [2] Center for Epidemiologic Studies, Utah State University, Logan, Utah 84322, USA. ; 1] Center for Epidemiologic Studies, Utah State University, Logan, Utah 84322, USA [2] Department of Psychology, Utah State University, Logan, Utah 84322, USA. ; 1] Center for Epidemiologic Studies, Utah State University, Logan, Utah 84322, USA [2] Department of Psychology, Utah State University, Logan, Utah 84322, USA [3] Department of Family Consumer and Human Development, Utah State University, Logan, Utah 84322, USA. ; 1] Department of Family Consumer and Human Development, Utah State University, Logan, Utah 84322, USA [2] Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, Utah 84322, USA. ; Department of Human Genetics, University of Pittsburgh, 130 Desoto Street, Pittsburgh, Pennsylvania 15261, USA. ; 1] Alzheimer's Disease Research Center, University of Pittsburgh, 130 Desoto Street, Pittsburgh, Pennsylvania 15261, USA [2] Department of Neurology, University of Pittsburgh, 130 Desoto Street, Pittsburgh, Pennsylvania 15261, USA. ; Department of Psychiatry, University of Pittsburgh, 130 Desoto Street, Pittsburgh, Pennsylvania 15261, USA. ; Human Genetics, School of Molecular Medical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK. ; Queen's University Belfast, University Road, Belfast BT7 1NN, UK. ; Royal Derby Hospital, Uttoxeter Road, Derby, DE22 3NE, UK. ; University of Bonn, Regina-Pacis-Weg 3, 53113 Bonn, Germany. ; University of Bristol, Tyndall Avenue, Bristol, City of Bristol BS8 1TH, UK. ; University of Leeds, Woodhouse Lane, Leeds, West Yorkshire LS2 9JT, UK. ; University of Newcastle, Newcastle upon Tyne, Tyne and Wear NE1 7RU, UK. ; University of Manchester, Oxford Road, Manchester, Greater Manchester M13 9PL, UK. ; University of Oxford (OPTIMA), Wellington Square, Oxford OX1 2JD, UK. ; 1] Neurogenetics Laboratory, Division of Neurosciences, Center for Applied Medical Research, University of Navarra, Avenida Pio XII, 55. 31008 Pamplona, Navarra, Spain [2] Department of Neurology, Clinica Universidad de Navarra, School of Medicine, University of Navarra Avenida Pio XII, 36. 31008 Pamplona, Spain [3] CIBERNED, Centro de Investigacion Biomedica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Spain. ; Neurogenetics Laboratory, Division of Neurosciences, Center for Applied Medical Research, University of Navarra, Avenida Pio XII, 55. 31008 Pamplona, Navarra, Spain. ; University of Washington, 325 Ninth Avenue, Seattle, Washington 98104-2499, USA. ; The Scripps Research Institute, La Jolla, California 3344 North Torrey Pines Court, La Jolla, California 92037, USA. ; Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada. ; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Building 35 Room 1A1014, 35 Lincoln Drive, Bethesda, Maryland 20892, USA. ; 1] Department of Human Genetics, University of Pittsburgh, 130 Desoto Street, Pittsburgh, Pennsylvania 15261, USA [2] Alzheimer's Disease Research Center, University of Pittsburgh, 130 Desoto Street, Pittsburgh, Pennsylvania 15261, USA [3] Department of Neurology, University of Pittsburgh, 130 Desoto Street, Pittsburgh, Pennsylvania 15261, USA. ; 1] Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada [2] Cambridge Institute for Medical Research, and the Department of Clinical Neurosciences, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK. ; 1] Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University 425 South Euclid Avenue, St. Louis, Missouri 63110, USA [2] Pathology and Immunology, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA. ; 1] Pathology and Immunology, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA [2] Department of Neurology, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA [3] Knight ADRC, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA. ; 1] Department of Psychiatry, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA [2] Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University 425 South Euclid Avenue, St. Louis, Missouri 63110, USA [3] Department of Neurology, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA [4] Knight ADRC, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA [5] Department of Genetics, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24336208" target="_blank"〉PubMed〈/a〉
    Keywords: African Americans/genetics ; Age of Onset ; Aged ; Aged, 80 and over ; Alzheimer Disease/*genetics/metabolism ; Amyloid beta-Peptides/metabolism ; Amyloid beta-Protein Precursor/metabolism ; Brain/metabolism ; Case-Control Studies ; Europe/ethnology ; Exome/genetics ; Female ; Genetic Predisposition to Disease/*genetics ; Genetic Variation/*genetics ; Humans ; Male ; Peptide Fragments/metabolism ; Phospholipase D/deficiency/*genetics/metabolism ; Protein Processing, Post-Translational/genetics ; Proteolysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1398-9995
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Background:  Growing up on a farm and an anthroposophic lifestyle are associated with a lower prevalence of allergic diseases in childhood. It has been suggested that the enhanced exposure to endotoxin is an important protective factor of farm environments. Little is known about exposure to other microbial components on farms and exposure in anthroposophic families.Objective:  To assess the levels and determinants of bacterial endotoxin, mould β(1,3)-glucans and fungal extracellular polysaccharides (EPS) in house dust of farm children, Steiner school children and reference children.Methods:  Mattress and living room dust was collected in the homes of 229 farm children, 122 Steiner children and 60 and 67 of their respective reference children in five European countries. Stable dust was collected as well. All samples were analysed in one central laboratory. Determinants were assessed by questionnaire.Results:  Levels of endotoxin, EPS and glucans per gram of house dust in farm homes were 1.2- to 3.2-fold higher than levels in reference homes. For Steiner children, 1.1- to 1.6-fold higher levels were observed compared with their reference children. These differences were consistently found across countries, although mean levels varied considerably. Differences between groups and between countries were also significant after adjustment for home and family characteristics.Conclusion:  Farm children are not only consistently exposed to higher levels of endotoxin, but also to higher levels of mould components. Steiner school children may also be exposed to higher levels of microbial agents, but differences with reference children are much less pronounced than for farm children. Further analyses are, however, required to assess the association between exposure to these various microbial agents and allergic and airway diseases in the PARSIFAL population.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...