Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-07-23
    Description: G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a approximately 20 degrees rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521999/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521999/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, Yanyong -- Zhou, X Edward -- Gao, Xiang -- He, Yuanzheng -- Liu, Wei -- Ishchenko, Andrii -- Barty, Anton -- White, Thomas A -- Yefanov, Oleksandr -- Han, Gye Won -- Xu, Qingping -- de Waal, Parker W -- Ke, Jiyuan -- Tan, M H Eileen -- Zhang, Chenghai -- Moeller, Arne -- West, Graham M -- Pascal, Bruce D -- Van Eps, Ned -- Caro, Lydia N -- Vishnivetskiy, Sergey A -- Lee, Regina J -- Suino-Powell, Kelly M -- Gu, Xin -- Pal, Kuntal -- Ma, Jinming -- Zhi, Xiaoyong -- Boutet, Sebastien -- Williams, Garth J -- Messerschmidt, Marc -- Gati, Cornelius -- Zatsepin, Nadia A -- Wang, Dingjie -- James, Daniel -- Basu, Shibom -- Roy-Chowdhury, Shatabdi -- Conrad, Chelsie E -- Coe, Jesse -- Liu, Haiguang -- Lisova, Stella -- Kupitz, Christopher -- Grotjohann, Ingo -- Fromme, Raimund -- Jiang, Yi -- Tan, Minjia -- Yang, Huaiyu -- Li, Jun -- Wang, Meitian -- Zheng, Zhong -- Li, Dianfan -- Howe, Nicole -- Zhao, Yingming -- Standfuss, Jorg -- Diederichs, Kay -- Dong, Yuhui -- Potter, Clinton S -- Carragher, Bridget -- Caffrey, Martin -- Jiang, Hualiang -- Chapman, Henry N -- Spence, John C H -- Fromme, Petra -- Weierstall, Uwe -- Ernst, Oliver P -- Katritch, Vsevolod -- Gurevich, Vsevolod V -- Griffin, Patrick R -- Hubbell, Wayne L -- Stevens, Raymond C -- Cherezov, Vadim -- Melcher, Karsten -- Xu, H Eric -- DK071662/DK/NIDDK NIH HHS/ -- EY005216/EY/NEI NIH HHS/ -- EY011500/EY/NEI NIH HHS/ -- GM073197/GM/NIGMS NIH HHS/ -- GM077561/GM/NIGMS NIH HHS/ -- GM095583/GM/NIGMS NIH HHS/ -- GM097463/GM/NIGMS NIH HHS/ -- GM102545/GM/NIGMS NIH HHS/ -- GM103310/GM/NIGMS NIH HHS/ -- GM104212/GM/NIGMS NIH HHS/ -- GM108635/GM/NIGMS NIH HHS/ -- P30EY000331/EY/NEI NIH HHS/ -- P41 GM103310/GM/NIGMS NIH HHS/ -- P41GM103393/GM/NIGMS NIH HHS/ -- P41RR001209/RR/NCRR NIH HHS/ -- P50 GM073197/GM/NIGMS NIH HHS/ -- P50 GM073210/GM/NIGMS NIH HHS/ -- R01 DK066202/DK/NIDDK NIH HHS/ -- R01 DK071662/DK/NIDDK NIH HHS/ -- R01 EY011500/EY/NEI NIH HHS/ -- R01 GM087413/GM/NIGMS NIH HHS/ -- R01 GM109955/GM/NIGMS NIH HHS/ -- S10 RR027270/RR/NCRR NIH HHS/ -- U54 GM094586/GM/NIGMS NIH HHS/ -- U54 GM094599/GM/NIGMS NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Jul 30;523(7562):561-7. doi: 10.1038/nature14656. Epub 2015 Jul 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA. ; Department of Chemistry and Biochemistry, and Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-1604, USA. ; Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA. ; Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany. ; Joint Center for Structural Genomics, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA. ; 1] Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA [2] Department of Obstetrics &Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore. ; The National Resource for Automated Molecular Microscopy, New York Structural Biology Center, New York, New York 10027, USA. ; Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, USA. ; Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA. ; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA. ; Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA. ; 1] Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA [2] BioXFEL, NSF Science and Technology Center, 700 Ellicott Street, Buffalo, New York 14203, USA. ; 1] Department of Chemistry and Biochemistry, and Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-1604, USA [2] Department of Physics, Arizona State University, Tempe, Arizona 85287, USA. ; 1] Department of Chemistry and Biochemistry, and Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-1604, USA [2] Beijing Computational Science Research Center, Haidian District, Beijing 10084, China. ; 1] Department of Chemistry and Biochemistry, and Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-1604, USA [2] Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA. ; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. ; Department of Obstetrics &Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore. ; Swiss Light Source at Paul Scherrer Institute, CH-5232 Villigen, Switzerland. ; Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA. ; School of Medicine and School of Biochemistry and Immunology, Trinity College, Dublin 2, Ireland. ; 1] BioXFEL, NSF Science and Technology Center, 700 Ellicott Street, Buffalo, New York 14203, USA [2] Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois 60637, USA. ; Laboratory of Biomolecular Research at Paul Scherrer Institute, CH-5232 Villigen, Switzerland. ; Department of Biology, Universitat Konstanz, 78457 Konstanz, Germany. ; Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China. ; 1] Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany [2] Centre for Ultrafast Imaging, 22761 Hamburg, Germany. ; 1] Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada [2] Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; 1] Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA [2] Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA [3] iHuman Institute, ShanghaiTech University, 2F Building 6, 99 Haike Road, Pudong New District, Shanghai 201210, China. ; 1] Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA [2] VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26200343" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arrestin/*chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Disulfides/chemistry/metabolism ; Humans ; Lasers ; Mice ; Models, Molecular ; Multiprotein Complexes/biosynthesis/chemistry/metabolism ; Protein Binding ; Reproducibility of Results ; Rhodopsin/*chemistry/*metabolism ; Signal Transduction ; X-Rays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-11-15
    Description: Two types of supernova are thought to produce the overwhelming majority of neutron stars in the Universe. The first type, iron-core-collapse supernovae, occurs when a high-mass star develops a degenerate iron core that exceeds the Chandrasekhar limit. The second type, electron-capture supernovae, is associated with the collapse of a lower-mass oxygen-neon-magnesium core as it loses pressure support owing to the sudden capture of electrons by neon and/or magnesium nuclei. It has hitherto been impossible to identify the two distinct families of neutron stars produced in these formation channels. Here we report that a large, well-known class of neutron-star-hosting X-ray pulsars is actually composed of two distinct subpopulations with different characteristic spin periods, orbital periods and orbital eccentricities. This class, the Be/X-ray binaries, contains neutron stars that accrete material from a more massive companion star. The two subpopulations are most probably associated with the two distinct types of neutron-star-forming supernova, with electron-capture supernovae preferentially producing systems with short spin periods, short orbital periods and low eccentricities. Intriguingly, the split between the two subpopulations is clearest in the distribution of the logarithm of spin period, a result that had not been predicted and which still remains to be explained.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Knigge, Christian -- Coe, Malcolm J -- Podsiadlowski, Philipp -- England -- Nature. 2011 Nov 9;479(7373):372-5. doi: 10.1038/nature10529.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Southampton, School of Physics and Astronomy, Southampton SO17 1BJ, UK. c.knigge@soton.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22080948" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-06
    Description: Serial femtosecond crystallography using ultrashort pulses from x-ray free electron lasers (XFELs) enables studies of the light-triggered dynamics of biomolecules. We used microcrystals of photoactive yellow protein (a bacterial blue light photoreceptor) as a model system and obtained high-resolution, time-resolved difference electron density maps of excellent quality with strong features; these allowed the determination of structures of reaction intermediates to a resolution of 1.6 angstroms. Our results open the way to the study of reversible and nonreversible biological reactions on time scales as short as femtoseconds under conditions that maximize the extent of reaction initiation throughout the crystal.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4361027/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4361027/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tenboer, Jason -- Basu, Shibom -- Zatsepin, Nadia -- Pande, Kanupriya -- Milathianaki, Despina -- Frank, Matthias -- Hunter, Mark -- Boutet, Sebastien -- Williams, Garth J -- Koglin, Jason E -- Oberthuer, Dominik -- Heymann, Michael -- Kupitz, Christopher -- Conrad, Chelsie -- Coe, Jesse -- Roy-Chowdhury, Shatabdi -- Weierstall, Uwe -- James, Daniel -- Wang, Dingjie -- Grant, Thomas -- Barty, Anton -- Yefanov, Oleksandr -- Scales, Jennifer -- Gati, Cornelius -- Seuring, Carolin -- Srajer, Vukica -- Henning, Robert -- Schwander, Peter -- Fromme, Raimund -- Ourmazd, Abbas -- Moffat, Keith -- Van Thor, Jasper J -- Spence, John C H -- Fromme, Petra -- Chapman, Henry N -- Schmidt, Marius -- P41 GM103543/GM/NIGMS NIH HHS/ -- R01GM095583/GM/NIGMS NIH HHS/ -- R24 GM111072/GM/NIGMS NIH HHS/ -- R24GM111072/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Dec 5;346(6214):1242-6. doi: 10.1126/science.1259357.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Physics Department, University of Wisconsin, Milwaukee, WI 53211, USA. ; Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA. ; Department of Physics, Arizona State University, Tempe, AZ 85287, USA. ; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Sand Hill Road, Menlo Park, CA 94025, USA. ; Lawrence Livermore National Laboratory, Livermore, CA 94550, USA. ; Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany. ; Center for Free Electron Laser Science, Deutsches Elektronen Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany. ; Hauptman-Woodward Institute, State University of New York at Buffalo, 700 Ellicott Street, Buffalo, NY 14203, USA. ; Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany. Center for Free Electron Laser Science, Deutsches Elektronen Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany. ; Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, USA. ; Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, USA. Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA. ; Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA. ; Physics Department, University of Wisconsin, Milwaukee, WI 53211, USA. m-schmidt@uwm.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25477465" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/*ultrastructure ; Crystallography, X-Ray/*methods ; Photoreceptors, Microbial/chemistry/*ultrastructure ; Protein Conformation ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-01-17
    Description: Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.6-5856 exhibits intensity and spectral modulation with a 16.6-day period. We identified a variable x-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fermi LAT Collaboration -- Ackermann, M -- Ajello, M -- Ballet, J -- Barbiellini, G -- Bastieri, D -- Belfiore, A -- Bellazzini, R -- Berenji, B -- Blandford, R D -- Bloom, E D -- Bonamente, E -- Borgland, A W -- Bregeon, J -- Brigida, M -- Bruel, P -- Buehler, R -- Buson, S -- Caliandro, G A -- Cameron, R A -- Caraveo, P A -- Cavazzuti, E -- Cecchi, C -- Celik, O -- Charles, E -- Chaty, S -- Chekhtman, A -- Cheung, C C -- Chiang, J -- Ciprini, S -- Claus, R -- Cohen-Tanugi, J -- Corbel, S -- Corbet, R H D -- Cutini, S -- de Luca, A -- den Hartog, P R -- de Palma, F -- Dermer, C D -- Digel, S W -- do Couto e Silva, E -- Donato, D -- Drell, P S -- Drlica-Wagner, A -- Dubois, R -- Dubus, G -- Favuzzi, C -- Fegan, S J -- Ferrara, E C -- Focke, W B -- Fortin, P -- Fukazawa, Y -- Funk, S -- Fusco, P -- Gargano, F -- Gasparrini, D -- Gehrels, N -- Germani, S -- Giglietto, N -- Giordano, F -- Giroletti, M -- Glanzman, T -- Godfrey, G -- Grenier, I A -- Grove, J E -- Guiriec, S -- Hadasch, D -- Hanabata, Y -- Harding, A K -- Hayashida, M -- Hays, E -- Hill, A B -- Hughes, R E -- Johannesson, G -- Johnson, A S -- Johnson, T J -- Kamae, T -- Katagiri, H -- Kataoka, J -- Kerr, M -- Knodlseder, J -- Kuss, M -- Lande, J -- Longo, F -- Loparco, F -- Lovellette, M N -- Lubrano, P -- Mazziotta, M N -- McEnery, J E -- Michelson, P F -- Mitthumsiri, W -- Mizuno, T -- Monte, C -- Monzani, M E -- Morselli, A -- Moskalenko, I V -- Murgia, S -- Nakamori, T -- Naumann-Godo, M -- Norris, J P -- Nuss, E -- Ohno, M -- Ohsugi, T -- Okumura, A -- Omodei, N -- Orlando, E -- Ozaki, M -- Paneque, D -- Parent, D -- Pesce-Rollins, M -- Pierbattista, M -- Piron, F -- Pivato, G -- Porter, T A -- Raino, S -- Rando, R -- Razzano, M -- Reimer, A -- Reimer, O -- Ritz, S -- Romani, R W -- Roth, M -- Saz Parkinson, P M -- Sgro, C -- Siskind, E J -- Spandre, G -- Spinelli, P -- Suson, D J -- Takahashi, H -- Tanaka, T -- Thayer, J G -- Thayer, J B -- Thompson, D J -- Tibaldo, L -- Tinivella, M -- Torres, D F -- Tosti, G -- Troja, E -- Uchiyama, Y -- Usher, T L -- Vandenbroucke, J -- Vianello, G -- Vitale, V -- Waite, A P -- Winer, B L -- Wood, K S -- Wood, M -- Yang, Z -- Zimmer, S -- Coe, M J -- Di Mille, F -- Edwards, P G -- Filipovic, M D -- Payne, J L -- Stevens, J -- Torres, M A P -- New York, N.Y. -- Science. 2012 Jan 13;335(6065):189-93. doi: 10.1126/science.1213974.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22246769" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-02-13
    Description: The three-dimensional structures of macromolecules and their complexes are mainly elucidated by X-ray protein crystallography. A major limitation of this method is access to high-quality crystals, which is necessary to ensure X-ray diffraction extends to sufficiently large scattering angles and hence yields information of sufficiently high resolution with which to solve the crystal structure. The observation that crystals with reduced unit-cell volumes and tighter macromolecular packing often produce higher-resolution Bragg peaks suggests that crystallographic resolution for some macromolecules may be limited not by their heterogeneity, but by a deviation of strict positional ordering of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise to a continuous diffraction pattern that is equal to the incoherent sum of diffraction from rigid individual molecular complexes aligned along several discrete crystallographic orientations and that, consequently, contains more information than Bragg peaks alone. Although such continuous diffraction patterns have long been observed--and are of interest as a source of information about the dynamics of proteins--they have not been used for structure determination. Here we show for crystals of the integral membrane protein complex photosystem II that lattice disorder increases the information content and the resolution of the diffraction pattern well beyond the 4.5-angstrom limit of measurable Bragg peaks, which allows us to phase the pattern directly. Using the molecular envelope conventionally determined at 4.5 angstroms as a constraint, we obtain a static image of the photosystem II dimer at a resolution of 3.5 angstroms. This result shows that continuous diffraction can be used to overcome what have long been supposed to be the resolution limits of macromolecular crystallography, using a method that exploits commonly encountered imperfect crystals and enables model-free phasing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ayyer, Kartik -- Yefanov, Oleksandr M -- Oberthur, Dominik -- Roy-Chowdhury, Shatabdi -- Galli, Lorenzo -- Mariani, Valerio -- Basu, Shibom -- Coe, Jesse -- Conrad, Chelsie E -- Fromme, Raimund -- Schaffer, Alexander -- Dorner, Katerina -- James, Daniel -- Kupitz, Christopher -- Metz, Markus -- Nelson, Garrett -- Xavier, Paulraj Lourdu -- Beyerlein, Kenneth R -- Schmidt, Marius -- Sarrou, Iosifina -- Spence, John C H -- Weierstall, Uwe -- White, Thomas A -- Yang, Jay-How -- Zhao, Yun -- Liang, Mengning -- Aquila, Andrew -- Hunter, Mark S -- Robinson, Joseph S -- Koglin, Jason E -- Boutet, Sebastien -- Fromme, Petra -- Barty, Anton -- Chapman, Henry N -- P41GM103393/GM/NIGMS NIH HHS/ -- P41RR001209/RR/NCRR NIH HHS/ -- R01 GM095583/GM/NIGMS NIH HHS/ -- R01 GM097463/GM/NIGMS NIH HHS/ -- U54 GM094599/GM/NIGMS NIH HHS/ -- England -- Nature. 2016 Feb 11;530(7589):202-6. doi: 10.1038/nature16949.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany. ; Department of Physics, University of Hamburg, 22761 Hamburg, Germany. ; School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA. ; Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA. ; Department of Physics, Arizona State University, Tempe, Arizona 85287, USA. ; Physics Department, University of Wisconsin, Milwaukee, Wisconsin 53211, USA. ; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, GR-70013 Crete, Greece. ; Linac Coherent Light Source, Stanford Linear Accelerator Center (SLAC), National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA. ; Centre for Ultrafast Imaging, 22607 Hamburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26863980" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallization ; Crystallography, X-Ray/*methods ; Models, Molecular ; Photosystem II Protein Complex/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0942-0940
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Zusammenfassung Zusammenfassung Die Diagnose und Behandlung von Störungen der Funktion von 16 eingebauten Heyer-Pudenz-Ventilen konnte durch den Gebrauch eines neuen punktierbaren Flüssigkeitsreservoirs erleichtert werden. Die wesentlichen klinischen Anwendungen sind: 1. Druckmessungen. 2. Nachweis einer Ruptur der Pumpenmembran. 3. Lokalisation der intrakardialen Lage des Ventils. 4. Bakteriologische Untersuchungen des Ventrikelliquors. 5. RISA-Untersuchungen der Funktion der einzelnen Komponenten des Shunts. 6. Prüfung der Durchgängigkeit des Vontrikelkatheters und der Funktion der Pumpenmembran bei solchen Shunts, bei denen das kardiale Segment vollständig verschlossen ist. Folgende therapeutische Anwendungen sind möglich 7. Wiederherstellung der normalen Durchgängigkeit des Ventilsystems durch Injektion von Kochsalzlösung. 8. Ventrikeldrainage in Notfällen. Es ist zu erwarten, daß sich noch weitere Anwendungsmöglichkeiten für das punktierbare Flüssigkeitsreservoir ergeben werden, wenn die Erfahrungen mit dem ventrikulo-atrialen Shunt und seinen Komplikationen größer wird.
    Abstract: Résumé Résumé Le diagnostic et le traitement des mauvais fonctionnements de 16 shunts ventriculo atriaux de Heyer-Pudenz qui avaient été mis en place, ont été facilités par l'utilisation d'un nouveau dispositif de déplétion en capsule ponctionnable. Principales applications cliniques: 1. Lectures de la pression. 2. Test de la valve diaphragme de rupture du dispositif de déplétion. 3. Localisation de la position de la valve cardiaque. 4. Cultures du liquide ventriculaire. 5. Etudes de RISA du fonctionnement des différents segments du shunt pris séparément. 6. Test du fonctionnement du cathéter ventriculaire, et du fonctionnement de la valve diaphragme dans le shunt, par l'occlusion totale du segment cardiaque. Applications thérapeutiques 7. Remettre le dispositif de déplétion en capsule à la configuration normale par injection saline. 8. Drainage ventriculaire d'urgence. On espère que d'autres utilisations du dispositif ponctionnable seront conçues comme notre expérience avec le shunt ventriculo-atrial et leurs applications plus larges.
    Notes: Summary Summary The diagnosis and treatment of malfunctions of sixteen implanted Heyer-Pudenz ventriculo-atrial shunts have been aided by the use of the new puncturable dome flushing device. Principal Clinical Uses (1) Pressure readings. (2) Testing flushing device diaphragm valve rupture. (3) Localization of cardiac valve position. (4) Ventricular fluid cultures. (5) RISA studies of function of separate components of shunt. (6) Testing ventricular catheter patency and diaphragm valve competence in shunt with total occlusion of the cardiac segment. Therapeutic Uses (7) Returning the flushing device dome to normal configuration by saline injection. (8) Emergency ventricular drainage. It may be that other uses for the puncturable feature will be conceived as our experience with the ventriculo-atrial shunt and its complications becomes broader.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Inorganic chemistry 11 (1972), S. 1519-1524 
    ISSN: 1520-510X
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 277 (1979), S. 675-676 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] As implied by the absence of the word "complex" from the title, this book is not concerned with metal complex ions in general. The author has wisely chosen to focus attention on the properties and certain reactions of metal ions that contain one or more solvent molecules as ligands. In view of the ...
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 263 (1976), S. 802-802 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] THE first three chapters of this book will be useful to anyone who wishes to acquire a good background knowledge before beginning a study of the complicated hydrolysis equilibria of metal cations. Methods of measurement (chiefly potentiometric) and the interpretation and treatment of data are ...
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...